Blatt 1

Prof. Dr. N-P. Skoruppa und C. Math. L. Fischer Abgabe: Mo,16-04-2007

Hinweis: Haben Sie Fragen zu den Aufgaben, so können Sie sich per Email an Herrn Fischer wenden.

Aufgabe 1. (4 Pte) Für eine natürliche Zahl n bezeichnet $\sigma(n)$ die Anzahl der Teiler von n.

- 1. Zeigen Sie: Ist p ein Primteiler von n, so ist $\sigma(n) = (t+1)\sigma(n/p^t)$, wo p^t die höchste in n aufgehende Potenz von p ist.
- 2. Benutzen Sie diese Formel für eine Implementierung mysigma(n) der Funktion $\sigma(n)$ mittels Rekursion in das CAS¹ Ihrer Wahl.
- 3. Benutzen Sie nun Ihre Funktion mysigma(n), um die kleinste natürlichste Zahl mit genau 60 Teilern zu finden. Gibt es unendlich viele Zahlen mit genau 60 Teilern?
- 4. Welche Zahl(en) mit weniger als 4 Stellen haben die meisten Teiler.

Aufgabe 2. (2 Pte) Beweisen Sie, dass jede Primzahl p die Binomialkoeffizienten $\binom{p}{n}$ mit 0 < n < p teilt.

Aufgabe 3. (2 Pte) Implementieren Sie in Ihrem CAS die Funktion $\pi(x)$ und berechnen Sie $\pi(x)$ für x = 10, 100, 1000, 10000, 100000, 1000000. (Bitte den Programmcode mit abgeben).

¹Computer Algebra System