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A3V (X3) 2 V(A + A3) & V(Xa) (3.9)
AV (A) 2 V(M) 8 V(2M) 9 V(2X3) @ V(0) (3.10)
AV (A3) 2 V(A + A3) @ V(X3) (3.11)
AV(X3) = V(M) @ V(M) (3.12)
ATV (A3) 2 V(As) (3.13)
VAV (A3) = V(2X5) & V(0) (3.14)

Notice that V() is the adjoint module of so(7, K). According to these decompo-
sitions we could have at most two good triples from so(7, K') and V(A3). (see (3.8)
and (3.12)).

At first we check wether (so(7,K),V(A3),7), where 7 is an so(7, K )-module
morphism from A*V(A3) onto so(7, K) (7 is unique up to scalar), is a good triple.
Since there is an L-invariant nondegenerate symmetric bilinear form on V(A3) (see
(3.14)), we can show that there is no 3-Lie algebra on V(A3) such that the Lie
algebra of its derivations is isomorphic to so(7, K') as in Case 1.

We now study whether there exists an 7-Lie algebra on V(A3) with its derivation
algebra isomorphic to so(7, i'). Theorem 1.2.4 shows each T-Lie algebra on V(A3) is
isomorphic to the vector product (K%, b, f). But the derivation algebra of the vector
product is so(8, K'). Hence there is no good triple of the form (so(7, K), V(A3), 7).

Case 5: L = Dy, A= A3 or M.

V(A3) and V(A4) are the two 8-dimensional spin modules of so(8, K'). Since
there is an automorphism 7 of so(8, K) such that the natural module K® becomes
V(Az) or V(A3) via z.v := (tz)(v) or z.v:= (r2z)(v) for z € so(8, K) and v € K5,
In view of the equivalence of good triples we are led to Case 1.

Case 6: L = Gq, A = \y.

V(A1) is the natural 7-dimensional G5-module, V(A;) is the adjoint module.

A V(M) 2 V(A B V(A) (3.15)
AV(A) 2 V(20) 8 V(M) 8 V(0) (3.16)
MV (M) ZV(2X) 8 V(M) 6 V(0) (3.17)
AV(M)Z V(M) V(r) (3.18)
ASV (M) 2 V(A) (3.19)
VAV () = V(2)0) @ V(0) -+ (3:300

Since V(A;) is a self-contragredient (Gz-module and there is up to scalar only one
nonzero G;-module morphism from A2V(};) onto G, (see (3.15) and (3.20)), we
can show as in Case 1 that there is no 3-Lie algebra on V(A1) with its derivation



