42 CHAPTER 4. LEVI DECOMPOSITION
Proof of Theorem §.1:

We will set I := Rad(V) in the following. If I = {0}, then V is semisimple
and we are done. So let I # {0} and suppose that the assertion is true in case |
is a minimal ideal of V. Under this hypothesis we prove the existence of a Levi
subalgebra for any n-Lie algebra by induction on the dimension of I. Assume that
the assertion is true for all n-Lie algebras whose radical has dimension less than
dim/. If I is a minimal ideal of V, then we are done. Now assume that I is
not minimal. Let J # {0} be an ideal of V which is properly included in I and
m: V — V/J be the canonical map. Then w«(J) is a solvable ideal of V//J by
Proposition 2.2, 2). Since #~1(Rad(V/J)) is a solvable ideal of V by Proposition
2.2 3), it is included in I. Hence Rad(V/J) C w(I) and x([) coincides with the
radical of V/J. Since dimw(J) < dim[, there exists a Levi subalgebra V' of V/J
with V/J = n(I) + V' and #(I)n V' = {0} by the induction hypothesis. Set
Vi := #7}(V’). Then V; is a subalgebra of V with V = I 4+ V;. Moreover, we
have INnVy; = J. In fact, from n(f N V;) C =(J)Nx(V}) = =(I)n V' = {0},
we obtain that /1 N V; C J. The other inclusion is evident. We show that J is
the radical of V;. Since J is a solvable ideal of -V, it is a solvable ideal of V;,
and thus J C Rad(V;). On the other hand, it follows from =(Rad(V;)) = {0}
that Rad(Vy) C J, hence J = Rad(V;). Since dimJ < dimI, we can find a Levi
subalgebra V; of V3 by the induction hypothesis. Then V4 is also a Levi subalgebra
of V because V=14 (J+Vy) =1+ Vp and I NV, = {0}.

It remains to show Theorem 4.1 in case I is a minimal ideal of V.

We set V := V/I and let 7 : V — V be the canonical homomorphism. Let
L (resp. L) be the derivation algebra of V' (resp. V). If V = {0}, then V is
solvable and we are done. Assume that V # {0}. Since V is a semisimple n-
Lie algebra, it is the direct sum of its simple ideals, say V = @}'_‘:IV; for some
m € N (see Theorem 2.7). Moreover L & @7, L;, L; = Inder(V;) 2 so(n + 1, K)
(see Theorem 1.2.4, Theorem 2.5 and Theorem 3.9). Let ¥ : L — L be the Lie
algebra homomorphism defined as in Theorem 2.9. Recall that + is surjective with
Kery = {D € L|D(V) C I} and R C Kery, where R denotes the radical of L.
Because for any Lie algebra L and any ideal M of L we have Rad(M) = Rad(L)NM
(cf. [18] p. 204), R is the radical of Kery. Let L, be a Levi subalgebra of Kery.
Since L, is semisimple, there exists a Levi subalgebra Ly of L such that Ly C Lo
(cf. [18] p. 226 and 228). In fact, L; is an ideal of L. To see this we first show
that LoN Kery = Ly. Let z € LyN Keryand z = y+ 2, y € R, z € L,. Because of
yz — z and  — 2 € Lo we must have y € Lo, hence y € RN Lo = {0} which implies
that z € L., that is LoNn Kery C L;. The other inclusion is trivial. Now, since Lg is
a subalgebra and Kery is an ideal of L, it follows that [Lg, L1] C Lo N Kery = L4,



