Appendiz A

Computing in Higher
Rank

by Paul E. Gunnells

A.1. Introduction

This book has addressed the theoretical and practical problems of perform-
ing computations with modular forms. Modular forms are the simplest
examples of the general theory of automorphic forms attached to a reduc-
tive algebraic group G with an arithmetic subgroup T they are the case
G = SLy(R) with T a congruence subgroup of SL(Z). For such pairs (G,T')
the Langlands philosophy asserts that there should be deep connections
between automorphic forms and arithmetic, connections that are revealed

* through the action of the Hecke operators on spaces of automorphic forms.
There have been many profound advances in recent years in our understand-
ing of these phenomena, for example:

o the establishment of the modularity of elliptic curves defined over
Q [Wil95, TW95, Dia96, CDT99, BCDTO1],

o the proof by Harris-Taylor of the local Langlands correspondence
[HTO1], and

o Lafforgue’s proof of the global Langlands correspondence for func-
tion fields [Laf02].

Nevertheless, we are still far from seeing that the links between automorphic
forms and arithmetic hold in the broad scope in which they are generally
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204 A. Computing in Higher Rank

believed. Hence one has the natural problem of studying spaces of automor-
phic forms computationally.

The goal of this appendix is to describe some computational techniques
for automorphic forms. We focus on the case G = SLn(R) and I' C SLy(Z).
since the automorphic forms that arise are one natural generalization of
modular forms, and since this is the setting for which we have the most
tools available. In fact, we do not work directly with automorphic forms,
but rather with the cohomology of the arithmetic group I' with certain
coefficient modules. This is the most natural generalization of the tools
developed in previous chapters.

Here is a brief overview of the contents. Section A.2 gives background on
automorphic forms and the cohomology of arithmetic groups and explains
why the two are related. In Section A.3 we describe the basic topological
tools used to compute the cohomology of I' explicitly. Section A.4 defines
the Hecke operators, describes the generalization of the modular symbols
from Chapter 8 to higher rank, and explains how to compute the action
of the Hecke operators on the top degree cohomology group. Section A.5
discusses computation of the Hecke action on cohomology groups below the
top degree. Finally, Section A.6 briefly discusses some related material and
presents some open problems.

A.1.1. The theory of automorphic forms is notorious for the difficulty of its
prerequisites. Even if one is only i d in the of
groups—a small part of the full theory—one needs considerable background
in algebraic groups, algebraic topology, and representation theory. This is
somewhat reflected in our presentation, which falls far short of being self-
contained. Indeed, a complete account would require a long book of its
own. We have chosen to sketch the foundational material and to provide
many pointers to the literature; good general references are [BW00, Harb,
LS90, Vog97]. We hope that the energetic reader will follow the references
and fill many gaps on his/her own.

The choice of topics presented here is heavily influenced (as usual) by the
author’s interests and expertise. There are many computational topics in
the cohomology of arithmetic groups we have completely omitted, including
the trace formula in its many incarnations [GPO5], the explicit Jacquet
Langlands correspondence [Dem04, SW05], and moduli space techniques
[FvdG, vdG|. We encourage the reader to investigate these extremely
interesting and useful techniques.

A.1.2. Acknowledgements. I thank Avner Ash, John Cremona, Mark
McConnell, and Dan Yasaki for helpful comments. I also thank the NSF for
support.
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A.2. Automorphic Forms and Arithmetic Groups

A.2.1. Let T = [g(N) C SL2(Z) be the usual Hecke congruence subgroup of
matrices upper-triangular mod N. Let Y5(V) be the modular curve T'\b, and
let Xo(N) be iits canonical compactification obtained by adjoining cusps. For
any integer k > 2, let Sg(N) be the space of weight k holomorphic cuspidal
modular forms on T. According to Eichler-Shimura [Shi94, Chapter 8], we
have the isomorphism
(A2.) HY(Xo(N);C) = So(N) @ S2(N),
where the bar denotes complex conjugation and where the isomorphism is
one of Hecke modules.

More generally, for any integer n > 0, let My, C C[z, ] be the subspace of
degree n homogeneous polynomials. The space Mj, admits a representation
of T by the “change of variables® map

(a22) (&%) plo) = s =t —cx .

This induces a local system M, on the curve Xo(N).! Then the analogue of
(A.2.1) for higher-weight modular forms is the isomorphism

(A2.3) H'(Xo(N); My_3) = Sp(N) @ Se(V).
Note that (A.2.3) reduces to (A.2.1) when k = 2.

Similar considerations apply if we work with the open curve Yp(N) in-
stead, except that Eisenstein series also contribute to the cohomology. More
precisely, let Ex(N) be the space of weight k Eisenstein series on To(N).
Then (A.2.3) becomes
(A2.4) HY(Yo(N): Mi_z) = Sk(N) @ (V) @ Ex(N).

These isomorphisms lic at the heart of the modular symbols method.

A.2.2. The first step on the path to general automorphic forms is a reinter-
pretation of modular forms in terms of functions on SLa(R). Let T C SL(Z)
be a congruence subgroup. A weight k modular form on ' is a holomorphic
function f: h — C satisfying the transformation property

Has+0f(es+d) =inatse), v=(8 §)er sev.

17 i local syst [Ste99a, Section 31] and [Eil47,
Chi V1. A more recent exposition (in the langungo of Gech cohomology and locally constant
sheaves) can be found in [BT82, I1L13). For an exposition tailored to our needs, see [Harb,
Section 2.9]
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Here j(v,2) is the automorphy factor cz + d. There are some additional
conditions f must satisfy at the cusps of b, but these are not so important
for our discussion.

The group G = SLa(R) acts transitively on b, with the subgroup K =
S0O(2) fixing i. Thus b can be written as the quotient G/K. From this,
we see that f can be viewed as a function G — C that is K-invariant on
the right and that satisfies a certain symmetry condition with respect to
the T-action on the left. Of course not every f with these properties is a
modular form: some extra data is needed to take the role of holomorphicity
and to handle the behavior at the cusps. Again, this can be ignored right
now.

We can turn this interpretation around as follows. Suppose ¢ is a func-
tion G — C that is T-invariant on the left, that is, p(vg) = @(g) for all
7 € I'. Hence ¢ can be thought of as a function ¢: I'\'G — C. We further
suppose that ¢ satisfies a certain symmetry condition with respect to the
K-action on the right. In particular, any matrix m € K can be written

cosf —sind
"”(sinr} cosf) ) sk,

(A.2.5)
with 6 uniquely determined modulo 27. Let G, be the complex number ¢i”.
Then the K-symmetry we require is

elom) = GFe(z), meK,
where k is some fixed nonnegative integer.

It turns out that such functions ¢ are very closely related to modular
forms: any f € S(T') uniquely determines such a function ¢;: T\G — C.
The correspondence is very simple. Given a weight k modular form f, define
(A.2:6) @s(9) = flg-)ila.i) ™.

We claim ¢ is left T-invariant and satisfies the desired K-symmetry on the
right. Indeed, since j satisfies the cocycle property
i(ghy2) = j(g, k- 2)j(h, 2).
we have
#1(19) = £((19)-D)i(v9, )™ = 37,90 F(g-D)i (. 9-) K39, ) 7* = o4(9).
Moreover, any m € K stabilizes i. Hence
@s(gm) = f((gm) - )i(gm, i)™ = f(g - i)j(m.i)*j(g,m )%,
From (A.2.5) we have j(m,i)™* = (cos6 + isinf)™* = (;*, and thus
er(gm) = Gk (9)-

Hence in (A.2.6) the weight and the automorphy factor “untwist” the

T-action to make @ left -invariant. The upshot is that we can study
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modular forms by studying the spaces of functions that arise through the
construction (A.2.6).

Of course, not every : I'\G — C will arise as ¢y for some f € Sk(T):
after all, f is holomorphic and satisfies rather stringent growth conditions.
Pinning down all the requirements is somewhat technical and is (mostly)
done in the sequel.

A.2.3. Before we define automorphic forms, we need to find the correct
generalizations of our groups SLz(R) and T'g(N). The correct setup is rather
technical, but this really reflects the power of the general theory, which
handles so many different situations (e.g., Maass forms, Hilbert modular
forms, Siegel modular forms, etc.).

Let G be a connected Lie group, and let K C G be a maximal com-
pact subgroup. We assume that G is the set of real points of a connected
semisimple algebraic group G defined over Q. These conditions mean the
following [PR94, §2.1.1):

(1) The group G has the structure of an affine algebraic variety given
by an ideal I in the ring R = Clz;;, D™!], where the variables
{zij | 1 < i,j < n} should be interpreted as the entries of an
“indeterminate matrix,” and D is the polynomial det(z;;). Both
the group multiplication G x G — G and inversion G — G are
required to be morphisms of algebraic varieties.

The ring R is the coordinate ring of the algebraic group GL,.
Hence this condition means that G can be essentially viewed as a
subgroup of GLn(C) defined by polynomial equations in the matrix
entries of the latter.

(2) Defined over Q means that I is generated by polynomials with
rational coefficients.

(3) Connected means that G is connected as an algebraic variety.

E

Set of real points means that G is the set of real solutions to the
equations determined by I. We write G = G(R).
(5) Semisimple means that the maximal connected solvable normal
subgroup of G is trivial.
Example A.1. The most important example for our purposes is the split
form of SLy. For this choice we have

G = SLa(R) and K = SO(n).
Example A.2. Let F/Q be a number field. Then there is a Q-group G such

that G(Q) = SLn(F). The group G is constructed as Ryq(SLy), where
Rp/q denotes the restriction of scalars from F to Q [PR94, §2.1.2]. For
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example, if F is totally real, the group R/q(SLz) appears when one studies
Hilbert modular forms.

Let (r, 5) be the signature of the field F, so that F®R ~ R" x C*. Then
G = SLa(R)" x SLa(C)* and K = SO(n)" x SU(n)*.
Example A.3. Another important example is the split symplectic group
Spy,. This is the group that arises when one studies Siegel modular forms.
The group of real points Spy,(R) is the subgroup of SLan (R) preserving a
fixed nondegenerate alternating bilinear form on R2". We have K = U(n).

A.2.4. To generalize T'y(N), we need the notion of an arithmetic group.
This is a discrete subgroup I' of the group of rational points G(Q) that is
commensurable with the set of integral points G(Z). Here commensurable
simply means that ' G(Z) is a finite index subgroup of both I' and G(Z);
in particular G(Z) itself is an arithmetic group.

Example A.4. For the split form of SL, we have G(Z) = SL,(Z) C
G(Q) = SL(Q). A trivial way to obtain other arithmetic groups is by
conjugation: if g € SL,(Q), then g- SLy(Z) - g~ is also arithmetic.

A more interesting collection of examples is given by the congruence
subgroups. The principal congruence subgroup T(NN) is the group of matri-
ces congruent to the identity modulo N for some fixed integer N > 1. A
congruence subgroup is a group containing r(N) for some N.

In higher dimensions there are many to ize the Hecke
subgroup Tg(IV). For example, one can take the subgroup of SL,(Z) that is
upper-triangular mod N. From a computational perspective, this choice is
not so good since its index in SL,(Z) is large. A better choice, and the one
that usually appears in the literature, is to define I'o(N) to be the subgroup
of SLn(Z) with bottom row congruent to (0,...,0,%) mod N.

A.2.5. We are almost ready to define automorphic forms. Let g be the Lie
algebra of G, and let U(g) be its universal enveloping algebra over C. Geo-
metrically, g is just the tangent space at the identity of the smooth manifold
G. The algebra U(g) is a certain complex associative algebra canonically
built from g. The usual definition would lead us a bit far afield, so we
will settle for an equivalent characterization: U(g) can be realized as a cer-
tain subalgebra of the ring of differential operators on C*(G), the space of
smooth functions on G.

In particular, G acts on C*(G) by left translations: given g € G and
[ € C®(G), we define

Lo(£)(@) := f(g™"2).

Then U(g) can be identified with the ring of all differential operators on
C™(G) that are invariant under left translation. For our purposes the most
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important part of U(g) is its center Z(g). In terms of differential opera-
tors, Z(g) consists of those operators that are also invariant under right
translation:
Ry(f)(@) := f(zg)-
Definition A.5. An automorphic formon G with respect to I' is a function
¢: G — C satisfying
(1) ¢(rg) = ¢(g) forall y € T,
(2) the right translates {¢(gk) | k € K} span a finite-dimensional space
£ of functions,
(3) there exists an ideal J C Z(g) of finite codimension such that J
annihilates ¢, and
(4) ¢ satisfies a certain growth condition that we do not wish to make
precise. (In the literature, ¢ is said to be slowly increasing.)

For fixed € and J, we denote by «7(T',€, J, K) the space of all functions
satisfying the above four conditions. It is a basic theorem, due to Harish-
Chandra [HC68], that &/(T', £, J. K) is finite-dimensional.

Example A.6. We can identify the cuspidal modular forms Si(N) in the
language of Definition A.5. Given a modular form f, let o7 € C*(SLa(R))
be the function from (A.2.6). Then the map f + o identifies Sk(N) with
the subspace @4 (N) of functions ¢ satisfying

(1) ¢(79) = ¢(g) for all y € To(N),
(2) ¢(gm) = GFe(g) for all m € SO(2),
(3) (A+ A)p = 0, where A € Z(g) is the Laplace-Beltrami-Casimir

operator and
k(K
=3 (5 - 1) i

(4) @ is slowly increasing, and
(5)  is cuspidal.

The first four conditions parallel Definition A.5. Item (1) is the I
invariance. Ttem (2) implies that the right translates of ¢ by SO(2) lie in a
fixed finite-dimensional representation of SO(2). Item (3) is how holomor-
phicity appears, namely that  is killed by a certain differential operator.
Finally, item (4) is the usual growth condition.

The only condition missing from the general definition is (5), which is an
extra constraint placed on ¢ to ensure that it comes from a cusp form. This
condition can be expressed by the vanishing of certain integrals (“constant
terms"); for details we refer to [Bum97, Gel75].
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Example A.7. Another important example appears when we set k
in (2) in Example A.6 and relax (3) by requiring only that (A — \)p
for some nonzero A € R. Such automorphic forms cannot possibly arise
from modular forms, since there are no nontrivial cusp forms of weight 0.
However, there are plenty of solutions to these conditions: they correspond
to real-analytic cuspidal modular forms of weight 0 and are known as Maass
forms. Traditionally one writes A = (1 — s2)/4. The positivity of A implies
that s € (—1,1) or is purely imaginary.

Maass forms are highly elusive objects. Selberg proved that there are in-
finitely many linearly independent Maass forms of full level (i.e., on SLa(Z)),
but to this date no explicit construction of a single one is known. (Selberg’s
argument is indirect and relies on the trace formula; for an exposition see
[Sar03].) For higher levels some explicit examples can be constructed using
theta series attached to indefinite quadratic forms [Vig77]. Numerically
Maass forms have been well studied; see for example [FL).

In general the ari ic nature of the ei A that
to Maass forms is unknown, although a famous conjecture of Selberg states
that for congruence subgroups they satisfy the inequality A > 1/4 (in other
words, only purely imaginary s appear above). The truth of this conjecture
would have far-reaching consequences, from analytic number theory to graph
theory [Lub94].

A.2.6. As Example A.6 indicates, there is a notion of cuspidal automorphic
Jorm. The exact definition is too technical to state here, but it involves
an appropriate generalization of the notion of constant term familiar from
modular forms.

There are also Eisenstein series [Lan66, Art79]. Again the complete
definition is technical; we only mention that there are different types of

i series ing to certain sub of G. The Ei;
series that are easiest to understand are those built from cusp forms on lower
rank groups. Very explicit formulas for Eisenstein series on GLg can be seen
in [Bum84]. For a down-to-earth exposition of some of the Eisenstein series
on GLn, we refer to [Gol05].

The decomposition of My(I'o(N)) into cusp forms and Eisenstein series
also generalizes to a general group G, although the statement is much more
complicated. The result is a theorem of Langlands [Lan76] known as the
spectral decomposition of L*(T\G). A thorough recent presentation of this
can be found in [MW94].

A.2.7. Let o = (I, K) be the space of all automorphic forms, where &
and J range over all possibilities. The space < is huge, and the arithmetic
significance of much of it is unknown. This is already apparent for G =
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SLa(R). The hic forms directly with aril ic are the
holomorphic modular forms, not the Maass forms®. Thus the question arises:
which automorphic forms in & are the most natural generalization of the
modular forms?

One answer is provided by the isomorphisms (A.2.1), (A.2.3), (A.2.4).
These show that modular forms appear naturally in the cohomology of mod-
ular curves. Hence a reasonable approach is to generalize the left of (A.2.1),
(A.2.3), (A.2.4), and to study the resulting cohomology groups. This is the
approach we will take. One drawback is that it is not obvious that our
generalization has anything to do with automorphic forms, but we will see
eventually that it certainly does. So we begin by looking for an appropriate
generalization of the modular curve Yp(N).

Let G and K be as in Section A.2.3, and let X be the quotient G/K.
This is a global Riemannian symmetric space [Hel01]. One can prove that
X is contractible. Any arithmetic group T' C G acts on X properly dis-
continuously. In particular, if T' is torsion-free, then the quotient I'\X is a
smooth manifold.

Unlike the modular curves, I\ X will not have a complex structure in
general®; nevertheless, '\ X is a very nice space. In particular, if T is torsion-
free, it is an Eilenberg-Mac Lane space for I', otherwise known as a K (T, 1).
This means that the only nontrivial homotopy group of I'\ X is its fundamen-
tal group, which is isomorphic to I', and that the universal cover of I\ X is
contractible. Hence '\ X is in some sense a “topological incarnation”® of T'.

This leads us to the notion of the group cohomology H*(T; C) of T with
trivial complex coefficients. In the early days of algebraic topology, this was
defined to be the complex cohomology of an Eilenberg-Mac Lane space for
I [Bro94, Introduction, I.4]:

(A2.7) H*(D;C) = H*(T\X; C).

Today there are purely algebraic approaches to H*(I':C) [Bro94, ITL1],
but for our purposes (A.2.7) is exactly what we need. In fact, the group
cohomology H*(T'; C) can be identified with the cohomology of the quotient
T\X even if I' has torsion, since we are working with complex coefficients.
The cohomology groups H*(T'; C), where " is an arithmetic group, are our
proposed generalization for the weight 2 modular forms.

‘What about higher weights? For this we must replace the trivial co-
efficient module C with local systems, just as we did in (A.2.3). For our

2However, Maass forms play a very important indirect role in arithmetic.

3The symmetric spaces that have a complex structure are known as bounded domains, or
Hermitian symmetric spaces [Hel01].

A This apt phrase is due to Vogan [Vog7].
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purposes it is enough to let .# be a rational finite-dimensional representa-
tion of G over the complex numbers. Any such .# gives a representation of
T C G and thus induces a local system .# on T'\X. As before, the group
cohomology H*(I';.#) is the cohomology H*(I'\X;.#). In (A.2.3) we took
M = My, the nth symmetric power of the standard representation. For a
general group G there are many kinds of representations to consider. Tn any
case, we contend that the cohomology spaces

H*(I; ) = H*(D\X; . A)
are a good generalization of the spaces of modular forms.

A.2.8. 1t is certainly not obvious that the cohomology groups H*(T';.#)
have anything to do with automorphic forms, although the isomorphisms
(A.2.1), (A.2.3), (A.2.4) look promising.
The connection is provided by a decp theorem of Franke [Fra98], which
asserts that
(1) the cohomology groups H*(T;.#) can be directly computed in
terms of certain automorphic forms (the automorphic forms of “co-
homological type,” also known as those with “nonvanishing (g, k)
cohomology” [VZ84]); and
(2) there is a direct sum decomposition

(A.28) H(03) = o (T5 M) & €D Hipy (T ),
{P}

where the sum is taken over the set of classes of associate proper
Q-parabolic subgroups of G.
The precise version of statement (1) is known in the literature as the Borel

conjecture. Statement (2) parallels Langlands’s spectral decomposition of
LAT\G).

Example A.8. For I' = Ty(N) C SLy(Z), the decomposition (A.2.8) is
exactly (A.2.4). The cuspforms Sy(N) @ Sx(N) correspond to the summand

Hup(Ts#). There is one class of proper Q-parabolic subgroups in SLy(R),
represented by the Borel subgroup of upper-triangular matrices. Hence only
one term appears in big direct sum on the right of (A.2.8), which is the
Eisenstein term Ej.

The summand Hy,(T;.#) of (A.2.8) is called the cuspidal cohomol-
ogy; this is the subspace of clnsse: repr«.%entcd by cuxpldsl auwmorphnc
forms. The ini the logy of I’
[Har91]. In particular the summand indexed by {P} is constructed using
Eisenstein series attached to certain cuspidal automorphic forms on lower
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rank groups. Hence Hz,q,(T'.#) is in some sense the most important part
of the cohomology: all the rest can be built systematically from cuspidal co-
homology on lower rank groups®. This leads us to our basic computational
problem:

Problem A.9. Develop tools to compute explicitly the cohomology spaces
H*(I';#) and to identify the cuspidal subspace H\gp (I3 .#).

A.3. Combinatorial Models for Group Cohomology

A.3.1. In this section, we restrict attention to G = SL,(R) and I', a congru-
ence subgroup of SLn(Z). By the previous section, we can study the group
cohomology H*(T'; #) by studying the cohomology H*(I'\X;.#). The lat-
ter spaces can be studied using standard topological techniques, such as
taking the of iated to cellular

of T\ X. For SL,(R), one can construct such decompositions using a version
of explicit reduction theory of real positive-definite quadratic forms due to
Voronoi [Vor08]. The goal of this section is to explain how this is done. We
also discuss how the cohomology can be explicitly studied for congruence
subgroups of SLg(Z).

A.3.2. Let V be the R-vector space of all symmetric n x n matrices, and
let C' C V be the subset of positive-definite matrices. The space C' can be
identified with the space of all real positive-definite quadratic forms in n
variables: in coordinates, if z = (21, ...,2n)" € R (column vector), then
the matrix A € C induces the quadratic form

z+— oAz,

and it is well known that any positive-definite quadratic form arises in this
way. The space C is a cone, in that it is preserved by homotheties: if
z € C, then Az € C for all A € Rsg. It is also convex: if z1,7; € C, then
tz1+(1—t)az € C for t € [0,1]. Let D be the quotient of C by homotheties.

Example A.10. The case n = 2 is illustrative. We can take coordinates on
V ~ RS by representing any matrix in V as

zy z
(27). smeen

The subset of singular matrices Q = {zz — y? = 0} is a quadric cone in
V dividing the complement V . Q into three connected components. The
component containing the identity matrix is the cone C of positive-definite
matrices. The quotient D can be identified with an open 2-disk.

5This is a bit of an oversimplification, since it is a highly nontrivial problem to decide when

cusp cohomology from lower rank groups appears in . However, many results are known; as a
selection we mention [Har91, Har87, LS04]
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The group G acts on C on the left by
(9.€) — geg'.

This action commutes with that of the homotheties and thus descends to a
G-action on D. One can show that G acts transitively on D and that the
stabilizer of the image of the identity matrix is K = SO(n). Hence we may
identify D with our symmetric space X = SL,(R)/SO(n). We will do this in
the sequel, using the notation D when we want to emphasize the coordinates
coming from the linear structure of C' C V and using the notation X for the
quotient G/K.

We can make the identification D ~ X more explicit. If g € SL,(R),
then the map
(A3.1) 9+ g4
takes g to a symmetric positive-definite matrix. Any coset gk is taken to the
same matrix since K K* = 1d. Thus (A.3.1) identifies G/K with a subset C)
of C, namely those positive-definite symmetric matrices with determinant
1. It is easy to see that C; maps diffeomorphically onto D.

The inverse map C; — G/K is more complicated. Given a determinant
1 pu tive-definite symmetric matrix A, one must find g € SL,(R) such that
99" = A. Such a representation always exists, with g determined uniquely up
to right multiplication by an element of K. In computational linear algebra,
such a g can be constructed through Cholesky decomposition of A.

The group SLn(Z) acts on C via the G-action and does so properly

This is the “uni: change of variables” action on

quadratic forms [Ser73, V.11]. Under our identification of D with X, this
is the usual action of SL,(Z) by left translation from Section A.2.7.

A.3.3. Now consider the group cohomology H*(T;.#) = H*(I\X;.A).
The identification D =~ X shows that the dimension of X is n(n + 1)/2 —
1. Hence H'(T;.#) vanishes if i > n(n +1)/2 — 1. Since dim X grows
quadratically in n, there are many potentially interesting cohomology groups
to study.

However, it turns out that there is some additional vanishing of the
cohomology for deeper (topulogxcal) reasons. For n = 2, this is easy to see.
The quotient I'\f is b ical surface with
corresponding to the cusps of I". Any &uch surface S can be retracted onto a
finite graph simply by “stretching” S along its punctures. Thus H*(I'; #) =
0, even though dimT'\h = 2.

For ' C SLn(Z), a theorem of Borel-Serre implies that H'(T;.#) van-
ishes if ¢ > dimX —n + 1 = n(n — 1)/2 [BS73, Theorem 11.4.4]. The
number v = n(n — 1)/2 is called the virtual cohomological dimension of T
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and is denoted ved T. Thus we only need to consider cohomology in degrees
i<w.

Moreover we know from Section A.2.8 that the most interesting part of
the l is the cuspidal In what degrees can it live?
For n = 2, there is only one interesting cohomology group H'(I;.#), and
it contains the cuspidal cohomology. For higher dimensions, the situation
is quite different: for most i, the subspace Hy,(I'; #) vanishes! In fact in
the late 1970’s Borel, Wallach, and Zuckerman observed that the cuspidal
cohomology can only live in the cohomological degrees lying in an interval
around (dim X)/2 of size linear in n. An explicit description of this interval
is given in [Sch86, Proposition 3.5]; one can also look at Table A.3.1, from
which the precise statement is easy to determine.

Another feature of Table A.3.1 deserves to be mentioned. There are
exactly two values of n, namely n = 2,3, such that virtual cohomological
dimension equals the upper limit of the cuspidal range. This will have
implications later, when we study the action of the Hecke operators on the
cohomology.

n J2[3]4]5]6]7]8]|9

dim X 2[5]9| 1420|2735 44

ved ' 13|6(10|15]21]28]36

top degree of Hi,, | 1[3[5| 8 |11|1519]24
bottom degree of Hz,ep || 12| 4] 6 | 9 [12]16 |20

Table A.3.1. The virtual cohomological dimension and the cuspidal
range for subgroups of SL(Z).

A.3.4. Recall that a point in Z" is said to be primitive if the greatest
common divisor of its coordinates is 1. In particular, a primitive point is
nonzero. Let & C Z" be the set of primitive points. Any v € 2, written as
a column vector, determines a rank-1 symmetric matrix g(v) in the closure C'
via g(v) = vo'. The Voronoi polyhedron Il is defined to be the closed convex
hull in C of the points g(v), as v ranges over 2. Note that by construction,
SLn(Z) acts on II, since SLn(Z) preserves the set {g(v)} and acts linearly
onV.

Example A.11. Figure A.3.1 represents a crude attempt to show what IT
looks like for n = 2. These images were constructed by computing a large
subset of the points g(v) and taking the convex hull (we took all points
v € 2 such that Traceg(v) < N for some large integer N). From a distance,
the polyhedron IT looks almost indistinguishable from the cone C7 this is
somewhat conveyed by the right of Figure A.3.1. Unfortunately II is not
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locally finite, so we really cannot produce an accurate picture. To got a
more accurate image, the reader should imagine that cach vertex meets
infinitely many edges. On the other hand, II is not hopelessly complex:
each maximal face is a triangle, as the pictures suggest.

Figure A.3.1. The polyhedron I for SL(Z). In (a) we see II from the
origin, in (b) from the side. The small triangle at the right center of (a)
is the facet with vertices {g(es), q(ez),q(e: + e2)}, where {1, ez} is the
standard basis of Z2. In (b) the z-axis runs along the top from left to
right, and the z-axis runs down the left side. The facet from (a) is the
little triangle at the top left corner of (b).

A.3.5. The polyhedron II is quite complicated: it has infinitely many faces
and is not locally finite. However, one of Voronoi’s great insights is that IT
is actually not as complicated as it seems.

For any A € C, let pi(A) be the minimum value attained by A on 2 and
let M(A) C 2 be the set on which A attains j2(A). Note that u(A) > 0 and
M(A) is finite since A is positive-definite. Then A is called perfect if it is
recoverable from the knowledge of the pair (11(A), M(A)). In other words,
given (1(A), M(A)), we can write a system of linear equations
(A3.2) mZm' = p(A), me M(A),
where Z = (z;;) is a symmetric matrix of variables. Then A is perfect if and
only if A is the unique solution to the system (A.3.2

(

Example A.12. The quadratic form Qi
smallest nontrivial value it attains on

columns of
101
M@Q) = ( 011 )

zy+y? is perfect. The
1, and it does so on the
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and their negatives. Letting az®+ By +yy* be an undetermined quadratic
form and applying the data (u(Q), M(Q)), we are led to the system of linear
equations

1.

a=1, 7=1, a+f+y
From this we recover Q(z, ).

Example A.13. The quadratic form Q/(z,y) = a? + y? is not perfect.
Again the smallest nontrivial value of Q' on Z? is m(Q’) = 1, attained on

the columns of
m@)=(1°
“\o01

and their negatives. But every member of the one-parameter family of qua-
dratic forms

(A.3.3) 2 +azy+y?, a€(-L1)
has the same set of minimal vectors, and so Q' cannot be recovered from
the knowledge of m(Q’), M(Q')-
Example A.14. Example A.12 generalizes to all n. Define
2- Y s
T i

Then A, is perfect for all n. We have u(An) = 1, and M(Ay) consists of all
points of the form

(A3.4) An()

H(ei+eis+oo-ter), 1<i<n, i<itk<n,

where {e;} is the standard basis of Z". This quadratic form is closely related
to the A, root lattice [FH91], which explains its name. It is one of two
infinite families of perfect forms studied by Voronoi (the other is related to
the D, root lattice).

‘We can now summarize Voronol’s main results:

(1) There are finitely many equivalence classes of perfect forms modulo
the action of SLn(Z). Voronoi even gave an explicit algorithm to
determine all the perfect forms of a given dimension.

(2) The facets of I1, in other words the codimension 1 faces, are in bijec-
tion with the rank n perfect quadratic forms. Under this correspon-
dence the minimal vectors M(A) determine a facet Fy by taking
the convex hull in C' of the finite point set {g(m) | m € M(A)}.
Hence there are finitely many faces of IT modulo SLn(Z) and thus
finitely many modulo any finite index subgroup T
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(3) Let ¥ be the set of cones over the faces of II. Then ¥ is a fan,
which means (i) if o € ¥, then any face of o is also in ¥; and
(ii) if 0,0’ € ¥, then 0 N ¢’ is a common face of each®. The
fan ¥ provides a reduction theory for C in the following sense:
any point € C is contained in a unique o(z) € ¥, and the
set {y € SLa(Z) | 7 - o(x) = o(z)} is finite. Vorono also gave an
explicit algorithm to determine o(x) given x, the Voronoi reduction
algorithm.

The number Nper of equivalence classes of perfect forms modulo the
action of GLn(Z) grows rapidly with n (Table A.3.2); the complete classifi-
cation is known only for n < 8. For a list of perfect forms up to n = 7, see
[CS88]. For a recent comprehensive treatment of perfect forms, with many
historical remarks, see [Mar03].

Dimension | Npert | Authors
2 1 Voronol [Vor08]
3 1 ibid.
4 2 ibid.
5 3 ibid.
6 7 Barnes [Bar57)
7 33 Jaquet-Chiffelle [Jaq91, JC93]
s 10916 | Dutour-Schirmann—Vallentin [DVS05}

Table A.3.2. The number Ny of equivalence classes of perfect forms.

A.3.6. Our goal now is to describe how the Voronoi fan ¥ can be used to
compute the cohomology H*(T';.#). The idea is to use the cones in ¥ to
chop the quotient D into pieces.

For any o € ¥, let 0° be the open cone obtained by taking the comple-
ment in o of its proper faces. Then after taking the quotient by homotheties,
the cones {0° N C | o € ¥} pass to locally closed subsets of D. Let ¢ be
the set of these images.

Anyce€isa cell, i.e., it is h ic to an open ball,
since c is homeomorphic to a face of II. Because % comes from the fan ¥,
the cells in ¢ have good incidence properties: the closure in D of any ¢ € €
can be written as a finite disjoint union of elements of ¥. Moreover, % is
locally finite: by taking quotients of all the o° meeting C, we have eliminated
the open cones lying in C, and it is these cones that are responsible for the
failure of local finiteness of . We summarize these properties by saying

S3trictly speaking, Voronoi actually showed that every codimension 1 cone is contained in
two top-dimensional cones.
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that € gives a cellular decomposition of D. Clearly SL,(Z) acts on €, since
6 is constructed using the fan ¥. Thus we obtain a cellular decomposition”
of T\ D for any torsion-free I'. We call € the Voronoi decomposition of D.

Some care must be taken in using these cells to perform topological
computations. The problem is that even though the individual pieces are
homeomorphic to balls and are glued together nicely, the boundaries of
the closures of the pieces are not homeomorphic to spheres in general. (If
they were, then the Voronoi decomposition would give rise to a regular cell
complex [CF67], which can be used as a substitute for a simplicial or CW
complex in homology computations.) Nevertheless, there is a way to remedy
this.

Recall that a subspace A of a topological space B is a strong deformation
retract if there is a continuous map f: B x [0,1] — B such that f(b,0) = b,
f(b,1) € A, and f(a,t) = a for all @ € A. For such pairs A C B we
have H*(A) = H*(B). One can show that there is a strong deformation
retraction from C to itself equivariant under the actions of both SL,(Z) and
the homotheties and that the image of the retraction modulo homotheties,
denoted W, is naturally a locally finite regular cell complex of dimension v.
Moreover, the cells in W are in bijective, inclusion-reversing correspondence
with the cells in €. In particular, if a cell in & has codimension d, the
cor ing cell in W has di ion d. Thus, for example, the vertices
of W modulo SLy(Z) are in bijection with the top-dimensional cells in €,
which are in bijection with equivalence classes of perfect forms.

In the literature W is called the well-rounded retract. The subspace
W C D = X has a beautiful geometric interpretation. The quotient

SLa(Z)\X = SLn(Z)\ SLa(R)/SO(n)

can be interpreted as the moduli space of lattices in R™ modulo the equiv-
alence relation of rotation and positive scaling (cf. [AGOO]; for n = 2 one
can also see [Ser73, VII, Proposition 3]). Then W corresponds to those
lattices whose shortest nonzero vectors span R™. This is the origin of the
name: the shortest vectors of such a lattice are “more round” than those of
a generic lattice.

The space W was known classically for n = 2 and was constructed
for n > 3 by Lannes and Soulé, although Soulé only published the case
n =3 [Sou75]. The construction for all n appears in work of Ash (Ash80,
Ash84], who also generalized W to a much larger class of groups. Explicit
computations of the cell structure of W have only been performed up to

7If T has torsion, then cells in € can have nontrivial stabilizers in T\, and thus T\# should
be considered as an “orbifold” cellular decomposition.
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n =6 [EVGS02). Certainly computing W explicitly for n = § seems very
difficult, as Table A.3.2 indicates.

Example A.15. Figure A.3.2 illustrates ¢ and W for SLy(Z). As in Ex-
ample A.11, the polyhedron IT is 3-dimensional, and so the Voronoi fan ¥
has cones of dimensions 0, 1,2, 3. The 1-cones of ¥, which correspond to the
vertices of I, pass to infinitely many points on the boundary 8D = D~ D.
The 3-cones become triangles in D with vertices on dD. In fact, the iden-
tifications D =~ SLy(R)/SO(2) ~ b realize D as the Klein model for the
hyperbolic plane, in which geodesics are represented by Euclidean line seg-
ments. Hence, the images of the 1-cones of ¥ are none other than the usual
cusps of b, and the triangles are the SLy(Z)-translates of the ideal triangle
with vertices {0,1,00}. These triangles form a tessellation of b sometimes
known as the Farey tessellation. The edges of the Voronoi are the SLy(Z)-
translates of the ideal geodesic between 0 and oo. After adjoining cusps
and passing to the quotient Xo(N), these edges become the supports of
the Manin symbols from Section 8.2 (cf. Figure 3.2.1). This example also
shows how the Voronoi decomposition fails to be a regular cell complex: the
boundaries of the closures of the triangles in D do not contain the vertices
and thus are not homeomorphic to circles.

The virtual cohomological dimension of SLy(Z) is 1. Hence the well-
rounded retract W is a graph (Figures A.3.2 and A.3.3). Note that W is
not a manifold. The vertices of W are in bijection with the Farey triangles—
each vertex lies at the center of the corresponding triangle—and the edges
are in bijection with the Manin symbols. Under the map D — b, the graph
W becomes the familiar “PSLy-tree” embedded in b, with vertices at the
order 3 elliptic points (Figure A.3.3).

A.3.7. We now discuss the example SL3(Z) in some detail. This example
gives a good feeling for how the general situation compares to the case n = 2.

‘We begin with the Voronm fan #. The cone C is 6-dimensional, and the
quotient D is 5-di There is one ival class of perfect forms
modulo the action of SL3(Z), represented by the form (A.3.4). Hence there
are 12 minimal vectors; six are the columns of the matrix

100101
(A.3.5) 010111},

001011

and the remaining six are the negatives of these. This implies that the cone
o corresponding to this form is 6-dimensional and simplicial. The latter
implies that the faces of o are the cones generated by {g(v) | v € S}, where
S ranges over all subsets of (A.3.5). To get the full structure of the fan, one
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Figure A.3.3. The Voronoi decomposition and the retract in b

must determine the SL3(Z) orbits of faces, as well as which faces lie in the
boundary OC = € ~. C. After some pleasant computation, one finds:
(1) There is one equivalence class modulo SL3(Z) for each of the 6-, 5-,
2-, and 1-dimensional cones.
(2) There are two equi classes of the 4-dimensional cones, rep-
resented by the sets of minimal vectors

1001 1001
0101 and 0101]).
0011 0010

(3) There are two equi classes of the 3-dimensional cones, rep-
resented by the sets of minimal vectors

100 101
010 and 01 1]).
001 000
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The second type of 3-cone lies in dC and thus does not determine
acell in €.

(4) The 2- and 1-dimensional cones lie cntirely in 9C and do not de-
termine cells in €.

After passing from C to D, the cones of dimension k determine cells
of dimension k — 1. Therefore, modulo the action of SL3(Z) there are five
types of cells in the Voronoi decomposition %, with dimensions from 5 to 2.
We denote these cell types by cs, c1, Csa, cap, and cz. Here czq corresponds
to the first type of d-cone in item (2) above, and cs to the second. For
a beautiful way to index the cells of % using configurations in projective
spaces, see [McC91].

The virtual cohomological dimension of SLg(Z) is 3, which means that
the retract W is a 3-dimensional cell complex. The closures of the top-
dimensional cells in W, which are in bijection with the Voronof cells of type
¢z, are homeomorphic to solid cubes truncated along two pairs of opposite
corners (Figure A.3.4). To compute this, one must see how many Voronoi
cells of a given type contain a fixed cell of type c; (since the inclusions of
cells in W are the opposite of those in €).

A table of the incidence relations between the cells of % and W is given
in Table A.3.3. To interpret the table, let m = m(X,Y) be the integer in
row X and column Y.

o If m is below the diagonal, then the boundary of a cell of type Y
contains m cells of type X.

o If m is above the diagonal, then a cell of type ¥ appears in the
boundary of m cells of type X.

For instance, the entry 16 in row cs5 and column c; means that a Voronoi
cell of type c; meets the boundaries of 16 cells of type cs. This is the same
as the number of vertices in the Soulé cube (Figure A.3.4). Investigation
of the table shows that the triangular (respectively, hexagonal) faces of the
Soulé cube correspond to the Voronoi cells of type czq (resp., cz).

Figure A.3.5 shows a Schlegel diagram for the Soulé cube. One vertex is
at infinity; this is indicated by the arrows on three of the edges. This Soulé
cube is dual to the Voronoi cell C of type ¢, with minimal vectors given by
the columns of the identity matrix. The labels on the 2-faces are additional
minimal vectors that show which Voronoi cells contain C. For example, the
central triangle labelled with (1,1,1)* is dual to the Voronoi cell of type csq
with minimal vectors given by those of C' together with (1,1,1)%. Cells of
type ¢4 containing C' in their closure correspond to the edges of the figure;
the minimal vectors for a given edge are those of C' together with the two
vectors on the 2-faces containing the edge. Similarly, one can read off the
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minimial vectors of the top-di Voronoi cells ining C, which

correspond to the vertices of Figure A.3.5.

1 c;

| ol

s caa | o | c
c;, . 2 3 6 16
e 6 . 3 6 24
Coa 3 1 . . 4
3 12 4 . . 6
o 12 8 4 3 .

Table A.3.3. Incidence relations in the Voronof decomposition and the
retract for SLa(Z).

Figure A.3.4. The Soulé cube.

A.3.8. Now let p be a prime, and let T' = Tg(p) C SL3(Z) be the Hecke
subgroup of matrices with bottom row congruent to (0,0,+) mod p (Ex-
ample A.4). The virtual cohomological dimension of T is 3, and the cusp

logy with constant ients can appear in degrees 2 and 3. One
can show that the cusp cohomology in degree 2 is dual to that in degree 3,
s0 for computational purposes it suffices to focus on degree 3.

In terms of W, these will be cochains supported on the 3-cells. Unfortu-
nately we cannot work directly with the quotient I'\W since T' has torsion:
there will be cells taken to themselves by the I’action, and thus the cells of
W need to be subdivided to induce the structure of a cell complex on I'\W.
Thus when I" has torsion, the “set of 3-cells modulo I unfortunately makes
1o sense.

To circumvent this problem, one can mimic the idea of Manin symbols.
The quotient T'\ SLs(Z) s in bijection with the finite projective plane P2(F,),
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Figure A.8.5. A Schlegel diagram of a Soulé cube, showing the mini-
‘mal vectors that correspond to the 2-faces.

where F, is the field with p elements (cf. Proposition 3.10). The group
SL3(Z) acts transitively on the set of all 3-cells of W; if we fix one such
cell w, its stabilizer Stab(w) = {7 € SL3(Z) | yw = w} is a finite subgroup
of SL3(Z). Hence the set of 3-cells modulo T should be interpreted as the
set of orbits in P?(F,) of the finite group Stab(w). This suggests describing
H3(T;C) in terms of the space .% of complex-valued functions f: P*(Fy,) —
C. To carry this out, there are two problems:

(1) How do we explicitly describe H3(T';C) in terms of 7

(2) How can we isolate the cuspidal subspace H3,,(T';C) ¢ H*(T;C)

in terms of our description?

Fully describing the solutions to these problems is rather complicated. We
content ourselves with presenting the following theorem, which collects to-
gether several statements in [AGG84]. This result should be compared to
Theorems 3.13 and 8.4.

Theorem A.16 (Theorem 3.19 and Summary 3.23 of [AGG84]). We have
dim H*(To(p); C) = dim H,,(To(p); C) + 25,

where Sy, is the dimension of the space of weight 2 holomorphic cusp forms
on To(p) C SLa(Z). Moreover, the cuspidal cohomology Hfm,,(l"q(p);c) is
isomorphic to the vector space of functions f: P*(F,) — C satisfying

1) f@y,2) = f(z,2,9) = f(-2,4,2) = —f(y,%,2),

@) fl&y,2) + f(-pz—v.2) + fly—2,-2,2) =0,

(3) f(2,y,0) =0, and
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(4) 22 f(ey,2) =0.

Unlike subgroups of SLy(Z), cuspidal cohomology is apparently much
rarer for Tg(p) C SLa(Z). The computations of [AGG84, vGvdKTV97|
show that the only prime levels p < 337 with nonvanishing cusp cohomology
are 53, 61, 79, 89, and 223. In all these examples, the cuspidal subspace is
2-dimensional.

For more details of how to implement such computations, we refer to
[AGG84, vGvdKTV97|. For further details about the additional compli-
cations arising for higher rank groups, in particular subgroups of SLy(Z),
see [AGMO2, Section 3).

A.4. Hecke O and Modular Symbol

A.4.1. There is one ingredient missing so far in our discussion of the co-
homology of arithmetic groups, namely the Hecke operators. These are an
essential tool in the study of modular forms. Indeed, the forms with the
most arithmetic signi are the Hecke ei, , and the i
with arithmetic is revealed by the Hecke eigenvalues.

In higher rank the situation is similar. There is an algebra of Hecke
operators acting on the cohomology spaces H*(I';.#). The eigenvalues of
these operators are conjecturally related to certain representations of the
Galois group. Just as in the case G = SLy(R), we need tools to compute
the Hecke action.

In this section we discuss this problem. We begin with a general de-
scription of the Hecke operators and how they act on cohomology. Then we
focus on one particular cohomology group, namely the top degree HY(I';C),
where v = ved(I') and T has finite index in SLn(Z). This is the setting
that generalizes the modular symbols method from Chapter 8. We con-
clude by giving examples of Hecke eigenclasses in the cuspidal cohomology
of To(p) C SL3(Z).

A.4.2. Let g € SL,(Q). The group I" = I'Ng~'Ig has finite index in both
T and g~'Tg. The element g determines a diagram C(g)

X
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called a Hecke correspondence. The map s is induced by the inclusion I’ C T,

while ¢ is induced by the inclusion I C g~'Tg followed by the diffeomor-

phism g~'Tg\X — I'\X given by left multiplication by g. Specifically,
s(I'z) =Tz, #('z)=Tgz, x€X.

The maps s and ¢ are finite-to-one, since the indices [I” : T] and [I” :

97'Tg] are finite. This implies that we obtain maps on cohomology
s*t HY(D\X) - H'(I'\X), t.: H(I'\X) — H*(D\X).
Here the map s* is the usual induced map on cohomology, while the “wrong-
way” map® ¢, is given by summing a class over the finite fibers of #. These
maps can be composed to give a map
Ty = tus": H'(T\X;.#) — H*(D\X;.4).

This is called the Hecke operator associated to g. There is an obvious notion
of i ism of Hecke One can show that up to iso-
morphism, the correspondence C(g) and thus the Hecke operator T, depend
only on the double coset [gl’. One can compose Hecke correspondences,
and thus we obtain an algebra of operators acting on the cohomology, just
as in the classical case.

Example A.17. Let n = 2, and let T = SLy(Z). If we take g = diag(1,p),
where p is a prime, then the action of T, on H(T'; Mj_) is the same as
the action of the classical Hecke operator T}, on the weight k holomorphic
modular forms. If we take I' = [y(N), we obtain an operator T(p) for
all p prime to N, and the algebra of Hecke operators coincides with the

isi Hecke algebra d by the T}, (p,N) = L. For p|N, one
can also describe the U, operators in this language.

Example A.18. Now let n > 2 and let I' = SL,(Z). The picture is
very similar, except that now there are several Hecke operators attached
to any prime p. In fact there are n — 1 operators T(p.k), k =1,...,n — 1.
The operator T(p, k) is associated to the correspondence C(g), where g =
diag(1,...,1,p,...,p) and where p occurs k times. If we consider the con-
gruence subgroups Io(N), we have operators T(p, k) for (p,N) = 1 and
analogues of the Uj, operators for p|N.

Just as in the classical case, any double coset Igl’ can be written as a
disjoint union of left cosets

rgr =[] rn
he

SUnder the identification H*(I'\X;.#) = H*(I'.#), the map t. becomes the transfer map.
in group cohomology [Bro94, 111.9]
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for a certain finite set of n X n integral matrices 2. For the operator T(p, k),
the set 2 can be taken to be all upper-triangular matrices of the form [Kri90,
Proposition 7.2]

where

o ¢; € {0,1} and exactly k of the ¢; are equal to 1 and

o ai; = 0 unless ¢; = 0 and ¢; = 1, in which case a;; satisfies 0 <

aij < p.

Remark A.19. The number of coset representatives for the operator T(p, k)
is the same as the number of points in the finite Grassmannian G(k, n) (F,).
A similar phenomenon is true for the Hecke operators for any group G,
although there are some subtleties (Gro98].

A.4.3. Recall that in Section A.3.6 we constructed the Voronoi decomposi-
tion € and the well-rounded retract W and that we can use them to compute
the logy H*(T; #). U we cannot directly use them to
compute the action of the Hecke operators on cohomology, since the Hecke
operators do not act cellularly on € or W. The problem is that the Hecke
image of a cell in % (or W) is usually not a union of cells in & (or W). This
is already apparent for n = 2. The edges of € are the SLy(Z)-translates
of the ideal geodesic 7 from 0 to oo (Example A.15). Applying a Hecke
operator takes such an edge to a union of ideal geodesics, each with vertices
at a pair of cusps. In general such geodesics are not an SLy(Z)-translate
of 7.

For n = 2, one solution is to work with all possible ideal geodesics
with vertices at the cusps, in other words the space of modular symbols M
from Section 3.2. Manin’s trick (Proposition 3.11) shows how to write any
modular symbol as a linear combination of unimodular symbols, by which
we mean modular symbols supported on the edges of . These are the ideas
we now generalize to all 7.

Definition A.20. Let Sy be the Q-vector space spanned by the symbols
v = [v,..., ], where v; € Q" \ {0}, modulo the following relations:
(1) If 7 is a permutation on n letters, then
[o,--e sign(r)[r(v1), -, 7(vn)],
where sign(r) is the sign of 7.
(2) If g € Q%, then
[qu1,v2... 0] =

[Bagpesiiall
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(3) If the points vy, ..., v, are linearly dependent, then v = 0.

Let B C Sy be the subspace generated by linear combinations of the form

(Ad.1) S Vifvor vl
=
where vg,...,v, € Q" \ {0} and where %; means to omit v;.

We call Sy the space of modular symbols. We caution the reader that
there are some differences in what we call modular symbols and those found
in Section 3.2 and Definition 8.2; we compare them in Section A.4.4. The
group SLn(Q) acts on S by left multiplication: g-v = [gv,..., gva]. This
action preserves the subspace B and thus induces an action on the quotient
M = So/B. For I' C SLy(Z) a finite index subgroup, let My be the space
of T-coinvariants in M. In other words, My is the quotient of M by the
subspace generated by {m —v-m | € I'}.

The relationship between modular symbols and the cohomology of T is
given by the following theorem, first proved for SL, by Ash and Rudolph
[AR79] and by Ash for general G [Ash86]:

Theorem A.21 ([Ash86, AR79)). Let I' C SL,(Z) be a finite index sub-
group. There is an isomorphism
(A4.2) Mr 5 HY(T;Q),

where T acts trivially on Q and where v = ved(T).

We remark that Theorem A.21 remains true if Q is replaced with non-
trivial coefficients as in Section A.2.7. Morcover, if T is assumed to be
torsion-free then we can replace Q with Z.

The great virtue of Mr is that it admits an action of the Hecke operators.
Given a Hecke operator T, write the double coset I'gI" as a disjoint union
of left cosets
(A4.3) rgr =[] e

he
as in Example A.18. Any class in Mr can be lifted to a representative
7= 3 q(v)v € So, where g(v) € Q and almost all g(v) vanish. Then we
define

(A.4.4) Ty(v) =Y h-v
hea
and extend to 7 by linearity. The right side of (A.4.4) depends on the

choices of 7 and Q, but after taking quotients and coinvariants, we obtain a
well-defined action on cohomology via (A.4.2).
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A.4.4. The space S is closely related to the space My from Section 3.2 and
Section 8.1. Indeed, My was defined to be the quotient (F/R)/(F/R)tor,
where F is the free abelian group generated by ordered pairs

(A.45) {a.8}), @BeP (Q),
and R is the subgroup generated by elements of the form
(A.4.6) {a,B} +{B.7} + {n.a}, @B.7€P(Q).

The only new feature in Definition A.20 is item (3). For n = 2 this corre-
sponds to the condition {a, a} = 0, which follows from (A.4.6). We have

So/B~M2®Q.

Hence there are two differences between Sy and M,: our notion of modular
symbols uses rational coefficients instead of integral coefficients and is the
space of symbols before dividing out by the subspace of relations B; we
further caution the reader that this is somewhat at odds with the literature.

We also remark that the general arbitrary weight definition of modular
symbols for a subgroup ' C SL(Z) given in Section 8.1 also includes taking
T-coinvariants, as well as extra data for a coefficient system. We have not
included the latter data since our emphasis is trivial coefficients, although
it would be easy to do so in the spirit of Section 8.1.

Elements of M also have a geometric interpretation: the symbol {a, 5}
corresponds to the ideal geodesic in h with endpoints at the cusps « and
. We have a similar picture for the symbols v = [vy,...,v,]. We can
assume that each v; is primitive, which means that each v; determines a
vertex of the Voronoi polyhedron II. The rational cone generated by these
vertices determines a subset A(v) C D, where D is the linear model of the
symmetric space X = SL,(R)/SO(n) from Section A.3.2. This subset A(v)
is then an “ideal simplex” in X. There is also a connection between A(v)
and torus orbits in X; we refer to [Ash86] for a related discussion.

A.4.5. Now we need a generalization of the Manin trick (Section 3.3.1).
This is known in the literature as the modular symbols algorithm.

We can define a kind of norm function on Sy as follows. Let v =
[v1,,va) be a modular symbol. For each v;, choose A; € Q* such that
Agvi is primitive. Then we define

vl := | det(Mo1, -, Antn)| € Z.

Note that ||v|| is well defined, since the A; are unique up to sign, and per-
muting the v; only changes the determinant by a sign. We extend || || to
all of Sy by taking the maximum of || || over the support of any 7 € Sp: if
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7= 3q(v)v, where ¢(v) € Q and almost all g(v) vanish, then we put
= Max |jv|.
mll L vl
‘We say a modular symbol 7 is unimodular if ||| = 1. It is clear that the
images of the unimodular symbols generate a finite-dimensional subspace of
My. The next theorem shows that this subspace is actually all of M.
Theorem A.22 ([AR79, Bar94]). The space My is spanned by the images
of the unimodular symbols. More precisely, given any symbol v € Sy with
vl >1,
(1) in So/B we may write
(A4.7) v=3aww, qw)ez,
where if g(w) # 0, then ||w|| = 1, and
(2) the number of terms on the right side of (A.4.7) is bounded by a
polynomial in log |v|| that depends only on the dimension n.

Proof. (Sketch) Given a modular symbol v = [v1, ..., v,], we may assume
that the points v; are primitive. We will show that if ||v[| > 1, we can find
a point u such that when we apply the relation (A.4.1) using the points
u,v1,...,vp, all terms other than v have norm less than [|vl. We call such
a point a reducing point for v.

Let P C R™ be the open parallelotope

Pi= {ZA,U, | Ml < uvu*’/"}.

Then P is an n-dimensional centrally symmetric convex body with volume
2". By Minkowski’s theorem from the geometry of numbers (cf. [FT93,
1V.2.6]), PNZ" contains a nonzero point u. Using (A.4.1), we find

(A.4.8) V=Y (-1 vi(w),
=
where v;(u) is the symbol

Vi(u) = [B1, -+, Vimty Uy Vi1, oy V)

Moreover, it is easy to see that the new symbols satisfy
(A.4.9) 0 < [lvi(w)|| < vV i=1,...,n.
‘This completes the proof of the first statement.
To prove the second statement, we must estimate how many times re-

lations of the form (A.4.8) need to be applied to obtain (A.4.7). A nonuni-
modular symbol produces at most n new modular symbols after (A.4.8) is
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performed; we potentially have to apply (A.4.8) again to each of the sym-
bols that result, which in turn could produce as many as n new symbols for
each. Hence we can visualize the process of constructing (A.4.7) as building
a rooted tree, where the root is v, the leaves are the symbols w, and where
each node has at most n children. It is not hard to see that the bound
(A.4.9) implies that the depth of this tree (i.e., the longest length of a path
from the root to a leaf) is O(loglog||v]|). From this the second statement
follows easily. a

Statement (1) of Theorem A.22 is due to Ash and Rudolph [ART9].
Instead of P, they used the larger parallelotope P’ defined by

= {ZA.v, | Nl < 1},

which has volume 27[[v||. The observation that P’ can be replaced by P
and the proof of (2) are both due to Barvinok [Bar94].

P

A.4.6. The relationship between Theorem A.22 and Manin’s trick should
be clear. For T' C SLy(Z), the Manin symbols correspond exactly to the
unimodular symbols mod I'. So Theorem A.22 implies that every modular
symbol (in the language of Section 8.1) is a linear combination of Manin
symbols. This is exactly the conclusion of Proposition 8.3.

In higher rank the relationship between Manin symbols and unimodular
symbols is more subtle. In fact there are two possible notions of “Manin
symbol,” which agree for SLy(Z) but not in general. One possibility is the
obvious one: a Manin symbol is a unimodular symbol.

The other possibility is to define a Manin symbol to be a modular symbol
corresponding to a top-dimensional cell of the retract W. But for n > 5, such
modular symbols need not be unimodular. In particular, for n = 5 there
are two equival classes of t 1 cells. One class corresponds
to the unimodular symbols, the othcr to a set of modular symbols of norm
2. However, Theorems A.21 and A.22 show that HY(T';Q) is spanned by
unimodular symbols. Thus as far as this cohomology group is concerned,
the second class of symbols is in some sense unnecessary.

A.4.7. We return to the setting of Section A.3.8 and give examples of Hecke
eigenclasses in the cusp cohomology of I' = T'o(p) C SLs(Z). We closely
follow [AGG84, vGvdKTV97). Note that since the top of the cuspidal
range for SLg is the same as the virtual cohomological dimension , we can
use modular symbols to compute the Hecke action on cuspidal classes.
Given a prime [ coprime to p, there are two Hecke operators of inter-
est T(1,1) and T(1,2). We can compute the action of these operators on
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HE,p(I'5C) as follows. Recall that H3,,,(I;C) can be identified with a cer-
tain space of functions f: P2(F,) — C (Theorem A.16). Given x € PX(F,),
let Q; € SL3(Z) be a matrix such that Q, — z under the identification
P2(Fy) = I'\ SL3(Z). Then Q. determines a unimodular symbol [Q;] by
taking the v; to be the columns of Q. Given any Hecke operator T, we can
find coset representatives h; such that TgI' = [] T'h; (explicit representatives
for I' = To(p) and T, = T(L, k) are given in [AGG84, vGvdKTV97]). The
modular symbols [h;Q;] are no longer unimodular in general, but we can
apply Theorem A.22 to write

hiQ] = 3 [Ry). R, €SLy(@).
7

Then for f: P*(F,) — C as in Theorem A.16, we have
(TyN)@) =Y f(Ry),
w

where Ry is the class of Ry; in P2(F,).

Now let £ € H3,,(T; C) be a simultaneous eigenclass for all the Hecke
operators T/, 1), T(1,2), as | ranges over all primes coprime with p. General
considerations from the theory of automorphic forms imply that the eigen-
values a(l, 1), a(1,2) are complex conjugates of one other. Hence it suffices
to compute a(l,1). We give two examples of cuspidal eigenclasses for two
different prime levels.

Example A.23. Let p = 53. Then H3,,(Io(53);C) is 2-dimensional. Let
1= (1+ y/=11)/2. One eigenclass is given by the data

L2 | 3 |s5| 7|u|l 13
ol —T=2[ 242 [ 1| 3] 1| 2-129

and the other is obtained by complex conjugation.

Example A.24. Let p = 61. Then H3,,(To(61); C) is 2-dimensional. Let
w = (14 /=3)/2. One cigenclass is given by the data

Ll 2 | 3 | s 7| n | 13
al) [ T-2w| S+do| 24| —6w| 2720 | 2-4w
and the other is obtained by complex conjugation.

A.5. Other Cohomology Groups

A.5.1. In Section A.4 we saw how to compute the Hecke action on the
top cohomology group H"(T';C). Unfortunately for n > 4, this cohomology
group does not contain any cuspidal cohomology. The first case is ' C
SL4(Z); we have ved(I') = 6, and the cusp cohomology lives in degrees 4
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and 5. One can show that the cusp cohomology in degree 4 is dual to that
in degree 5, so for computational purposes it suffices to be able to compute
the Hecke action on H(I';C). But modular symbols do not help us here.

In this section we describe a technique to compute the Hecke action
on H"~!(I';C), following [Gun00a]. The technique is an extension of the
modular symbol algorithm to these cohomology groups. In principle the
ideas in this section can be modified to compute the Hecke action on other
cohomology groups H”~X(I';C), k > 1, although this has not been investi-
gated”. Forn =4, we have applied zhe algorithm in joint work with Ash and
McConnell to i the H(I'; C), where
To(N) C SLy(Z) [AGMOZ2].

A.5.2. To begin, we need an analogue of Theorem A.21 for lower degree
cohomology groups. In other words, we need a generalization of the mod-
ular symbols for other cohomology groups. This is achieved by the sharbly
complex S.:

Definition A.25 ([Ash94]). Let {S.,8} be the chain complex given by the
following data:
(1) For k > 0, Sy is the Q-vector space generated by the symbols
W= [v1,-..,4k], where v; € Q" ~ {0}, modulo the relations:
(a) If 7 is a permutation on (n + k) letters, then
[v1,- s vng] = sign(7)[r(v1), -, T(vns)],
where sign(r) is the sign of 7.
(b) If g € Q, then
lqui, vz, vask] = 01, Vnpi]-
(c) If the rank of the matrix (vi,...,vn4k) is less than n, then
u=0.
(2) For k > 0, the boundary map 9: Sk — Sx_y is

ntk

[T ey 0 Vi YR R A &

b=
We define 9 to be identically zero on Sp.
The elements

= o1, skl

9The first interesting case is n = 5, for which the cuspidal cohomology lives in H¥~2.
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are called k-sharblies'®. The O-sharblies are exactly the modular symbols
from Definition A.20, and the subspace B C Sp is the image of the boundary
map 8: S; — Sp.

There is an obvious left action of T on S, commuting with 8. For any
k>0, let Sir be the space of I-coinvariants. Since the boundary map 9
commutes with the I-action, we obtain a complex (S. r,dr). The following
theorem shows that this complex computes the cohomology of I':

Theorem A.26 ([Ash94]). There is a natural isomorphism
H""¥(I;€) = Hi(S.r ©C).

A.5.3. We can extend our norm function | || from modular symbols to all
of Sy, as follows. Let u = [uvy,...,vp44] be a k-sharbly, and let Z(u) be
the set of all submodular symbols determined by u. In other words, Z(u)
consists of the modular symbols of the form [vi,, ..., v, ], where {i1, ..., in}
ranges over all n-fold subsets of {1,...,n + k}. Define |jul| by
= M i’
|| e Ivi
Note that [Ju]| is well defined modulo the relations in Definition A.25. As
for modular symbols, we extend the norm to sharbly chains £ = 3" g(u)u
taking the maximum norm over the support. Formally, we let supp(¢) =
{u ] q(u) # 0} and Z(&) = Uycoupp(e) Z(u), and then we define €] by
= Max |lv||.
4] M Ivil

We say that £ is reduced if [|€]] = 1. Hence £ is reduced if and only if
all its symbols are uni; or have det i 0. Clearly
there are only finitely many reduced k-sharblies modulo T for any k.

In general the cohomology groups H*(T';C) are not spanned by reduced
sharblies. However, it is known (cf. [McC91]) that for I' C SLy(Z), the
group H5(I';C) is spanned by reduced 1-sharbly cycles. The best one can
say in general is that for each pair n, k, there is an integer N = N(n, k) such
that for I' C SLa(Z), H*~*(T;C) is spanned by k-sharblies of norm < N.
This set of sharblies is also finite modulo I', although it is not known how
large N must be for any given pair n, k.

A.5.4. Recall that the cells of the well-rounded retract W are indexed by
sets of primitive vectors in Z". Since any primitive vector determines a point
in @"~ {0} and since sets of such points index sharblies, it is clear that there
is a close relationship between S, and the chain complex associated to W,

10The terminology for S. is due to Lee Rudolph, in honor of Lee and Szczarba. They
introduced a very similar complex in [LS76] for SLa(Z).
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although of course S, is much bigger. In any case, both complexes compute
H*(I';C).

The main benefit of using the sharbly complex to compute cohomology
is that it admits a Hecke action. Suppose &€ = Y g(u)u is a sharbly cycle
mod T, and consider a Hecke operator 7,. Then we have

(A5.1) T,6) = Y n(uh-u,

heu
where Q is a set of coset representatives as in (A.4.3). Since Q ¢ SLy(Z) in
general, the Hecke image of a reduced sharbly is not usually reduced.

A.5.5. We are now ready to describe our algorithm for the computation of
the Hecke operators on H*~}(I'; C). It suffices to describe an algorithm that
takes as input a 1-sharbly cycle £ and produces as output a cycle £ with

(a) the classes of € and ¢ in H~}(I;C) the same, and
(b) llg'll < llell if el > 1.

Below, we will present an algorithm satisfying (a). In [Gun00a], we
conjectured (and presented evidence) that the algorithm satisfies (b) for
n < 4. Further evidence is provided by the computations in [AGMO02],
which relied on the algorithm to compute the Hecke action on H3(I';C),
where I' = Tg(N) C SL4(Z).

The idea behind the algorithm is simple: given a 1-sharbly cycle £ that is
not reduced, (i) simultaneously apply the modular symbol algorithm (The-
orem A.22) to each of its submodular symbols, and then (ii) package the
resulting data into a new 1-sharbly cycle. Our experience in presenting this
algorithm is that most people find the geometry involved in (ii) daunting.
Hence we will give details only for n = 2 and will provide a sketch for n > 2.
Full details are contained in [Gun00a]. Note that n = 2 is topologically
and arithmetically uninteresting, since we are computing the Hecke action
on HO(T';C); nevertheless, the geometry faithfully represents the situation
for all n.

A.5.6. Fix n = 2, let £ € 5, be a l-sharbly cycle mod T for some T' C
SLy(Z), and suppose € is not reduced. Assume T is torsion-free to simplify
the presentation.

Suppose first that all submodular symbols v € Z(€) are nomunimod-
ular. Select reducing points for cach v € Z(£) and make these choices
I-equivariantly. This means the following. Suppose u,u’ € supp¢ and
v € supp(9u) and v/ € supp(du’) are modular symbols such that v = - v/
for some € I'. Then we select reducing points w for v and w' for v/ such
that w = 7. (Note that since I' s torsion-free, no modular symbol can
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be identified to itself by an clement of I'; hence v # v’.) This is possible
since if v is a modular symbol and w is a reducing point for v, then y-w is a
reducing point for - v for any v € T. Because there are only finitely many
T-orbits in Z(€), we can choose reducing points I'-equivariantly by selecting
them for some set of orbit representatives.

It is important to note that I'-equivariance is the only global criterion we
use when selecting reducing. In particular, there is a priori no relationship
among the three reducing points chosen for any u € supp&.

A.5.7. Now we want to use the reducing points and the 1-sharblies in ¢ to
build €. Choose u = [v1, vz, v3] € supp&, and denote the reducing point, for
[vs, 5] by wk, where {i, j,k} = {1,2,3}. We use the v; and the w; to build
a 2-sharbly chain n(u) as follows.

Let P be an octahedron in R®. Label the vertices of P with the v;
and w; such that the vertex labeled v; is opposite the vertex labeled w;
(Figure A.5.1). Subdivide P into four tetrahedra by connecting two opposite
vertices, say v1 and w;, with an edge (Figure A.5.2). For each tetrahedron
T, take the labels of four vertices and arrange them into a quadruple. If we
orient P, then we can use the induced orientation on T to order the four
primitive points. In this way, each T’ determines a 2-sharbly, and n(u) is
defined to be the sum. For example, if we use the decomposition in Figure
A.5.2, we have
(A5.2)

(u) = [v1, 3, va, wi] + [o1, w2, v, wi] + [v1, ws, wa, wy) + [y, v, ws, wy).
Repeat this construction for all u € supp&, and let n = Y- g(u)n(u). Finally,
let & =&+ 0n.

wy

o

v3 kS v
vy

w2

Figure A.5.1.

LT

Figure A.5.2.
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A.5.8. By construction, ¢ is a cycle mod T in the same class as £&. We
claim in addition that no submodular symbol from ¢ appears in €. To see
this, consider 87(u). From (A.5.2), we have

(A5.3) On(u) = ~[v1,v2,v3] + [v1, v2,w3] + [01, w2, v3] + [wn, v2,v3]
= [v, o, ws] — [wy, g, ws] = [wr, wa, vg] + [w1, wa, wy].

Note that this is the boundary in S., not in S.p. Furthermore, dn(u) is
independent of which pair of opposite vertices of P we connected to build
n(u).

From (A.5.3), we see that in £ + dn the 1-sharbly —[vy,v2,v3] is can-
celed by u € suppé. We also claim that I-sharblies in (A.5.3) of the form
[vi, vj, wi] vanish in 8.

To see this, let u,u’ € supp&, and suppose v = [v1, v2] € supp du equals
v for some v' = [v},v}] € suppdu’. Since the reducing points were
chosen I'-equivariantly, we have w =+ - w’. This means that the 1-sharbly
o1, v2, ) € An(u) will be canceled mod T by [v], v, /] € dn(w). Hence, in
passing from £ to &, the effect in (S.)r is to replace u with four 1-sharblies
in supp&”:

(A.5.4) [v1,v2,v3] = —[v1, w2, wa]—[wn, v, ws] ~ w1, wa, va]+[w1, w2, ws).
Note that in (A.5.4), there are no 1-sharblies of the form [v;, v;, wg].

Remark A.27. For implementation purposes, it is not necessary to explic-
itly construct 7. Rather, one may work directly with (A.5.4).

A.5.9. Why do we expect ¢’ to satisfy [|€']| < [|€]|? First of all, in the right
hand side of (A.5.4) there are no submodular symbols of the form [v;, v;].
In fact, any submodular symbol involving a point v; also includes a reducing
point for [v;, ;).

On the other hand, consider the submodular symbols in (A.5.4) of the
form [w;, w;). Since there is no relationship among the w;, one has no reason
to believe that these modular symbols are closer to unimodularity than
those in u. Indeed, for certain choices of reducing points it can happen that
IIfwis w3l = -

The upshot is that some care must be taken in choosing reducing points.
In [Gun00a, Conjectures 3.5 and 3.6] we describe two methods for finding
reducing points for modular symbols, one using Voronoi reduction and one
using LLL-reduction. Our experience is that if one selects reducing points
using either of these conjectures, then [|[w;, w;]|| < |[u] for each of the new
modular symbols [w;, w;]. In fact, in practice these symbols are trivial or
satisfy ||[wi, wj]|| = 1.



238 A. Computing in Higher Rank

A.5.10. In the previous discussion we assumed that no submodular symbols
of any u € supp¢ were unimodular. Now we say what to do if some are.
There are three cases to consider.

First, all submodular symbols of u may be unimodular. In this case
there are no reducing points, and (A.5.4) becomes

(A.5.5) [v1, v2, v3] — [v1,v2, v3).
Second, one submodular symbol of u may be nonunimodular, say the
symbol [v1,vz]. In this case, to build n, we use a tetrahedron P’ and put

n(w) = [v1, v2, v3, ws] (Figure A.5.3). Since [vy, vz, ws) vanishes in the bound-
ary of 7 mod T (A.5.4) becomes

(A.5.6) [v1, v2, vg] = —[vr, 3, ws] + [v2, v3, ws).
kd
A v
Figure A.5.3.
Finally, two submodul. bols of u may be imodular, say [vr, va]

and [vy,vs]. In this case we use the cone on a square P” (Figure A.5.4).
To construct 7(u), we must choose a decomposition of P” into tetrahedra.
Since P” has a nonsimplicial face, this choice affects £ (in contrast to the
previous cases). If we subdivide P by connecting the vertex labelled v,
with the vertex labelled wy, we obtain

(A5.7) [v1,v2, 03] = [v2, w2, w3] + [v2,v3,ws] + [v1, v3, wa].

v v2

Figure A.5.4.

A.5.11. Now consider general n. The basic technique is the same, but
the combinatorics become more complicated. Suppose u = [, .., vs1]
satisfies g(u) # 0 in a l-sharbly cycle &, and for i = 1,...,n + 1 let v;
be the submodular symbol [vs,...,@,...,vps1). Assume that all v; are
nonunimodular, and for each i let w; be a reducing point for v;.
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For any subset I C {1,...,n+1}, let uy be the 1-sharbly [uy, ..., un41),
where w; = w; if i € I, and u; = v; otherwise. The polytope P used to
build n(u) is the cross polytope, which is the higher-dimensional analogue of
the octahedron [Gun00a, §4.4]. We suppress the details and give the final
answer: (A.5.4) becomes

(A5.8) u— =3 (-1)*yy,
T

where the sum is taken over all subsets I C {1,...,n+ 1} of cardinality at
least 2.

More generally, if some v; happen to be unimodular, then the polytope
used to build 7 is an iterated cone on a lower-dimensional cross polytope.
This is already visible for n = 2:

o The 2-dimensional cross polytope is a square, and the polytope P”
is a cone on a square.

o The 1-dimensional cross polytope is an interval, and the polytope
P' i a double cone on an interval.

Altogether there are n + 1 relations generalizing (A.5.5)~(A.5.7).

A.5.12. Now we describe how these computations are carried out in prac-
tice, focusing on T = [g(N) C SLy(Z) and H5(T';C). Besides discussing
technical details, we also have to slightly modify some aspects of the con-
struction in Section A.5.6, since I is not torsion-free.

Let W be the well-rounded retract. We can represent a cohomology class
B € H3(T';C) as B =Y q(0)o, where o denotes a codimension 1 cell in W.
In this case there are three types of codimension 1 cells in W. Under the
bijection W « &, these cells correspond to the Voronof cells indexed by the
columns of the matrices

(A5.9)
10001 10001 10001
01001 01001 01001
00101} 00101) 00100
00011 00010 00010

Thus each o in W modulo T corresponds to an SL(Z)-translate of one
of the matrices in (A.5.9). These translates determine basis 1-sharblies u
(by taking the points u; to be the columns), and hence we can represent 3
by a l-sharbly chain £ = 3 g(u)u € Sy that is a cycle in the complex of
coinvariants (S, r,r).

To make later computations more efficient, we precompute more data
attached to €. Given a 1-sharbly u = [us, ..., uns1), a lift M(u) of u is
defined to be an integral matrix with primitive columns M; such that u =
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[M, ..., My11). Then we encode £, once and for all, by a finite collection ®
of 4-tuples
(u,n(u), {v},{M(v)}),

where

(1) u ranges over the support of €,

(2) n(u) € Cis the coefficient of u in &,

(3) {v} is the set of submodular symbols appearing in the bounday of

u, and

(4) {M(v)} is a set of Lifts for {v}.
Moreover, the lifts in (4) are chosen to satisfy the following I-equivariance
condition. Suppose that for u,u’ € supp¢ we have v € supp(du) and
v € supp(Ou’) satisfying v = 7 - v/ for some v € I. Then we require
M(v) = yM(v'). This is possible since £ is a cycle modulo T', although
there is one complication since T' has torsion: it can happen that some
submodular symbol v of a 1-sharbly u is identified to itself by an element of
I'. This means that in constructing {M(v)} for u, we must somehow choose
more than one lift for v. To deal with this, let M(v) be any lift of v, and
let T(v) C T be the stabilizer of v. Then in €, we replace g(u)u by

1
s Y a(wu,
#TV) &0
where u, has the same data as u, except!! that we give v the lift YM(v).

Next we compute and store the 1-sharbly transformation laws general-
izing (A.5.5)~(A.5.7). As a part of this we fix triangulations of certain cross
polytopes as in (A.5.7).

We are now ready to begin the actual reduction algorithm. We take a
Hecke operator T(l, k) and build the coset representatives © as in (A.5.1).
For each i € © and each 1-sharbly u in the support of ¢, we obtain a non-
reduced 1-sharbly uy := h - u. Here h acts on all the data attached to u in
the list ®. In particular, we replace each lift M(v) with k- M(v), where the
dot means matrix multiplication.

Now we check the submodular symbols of u, and choose reducing points
for the nonunimodular symbols. This is where the lifts come in handy. Recall
that reduction points must be chosen I-equivariantly over the entire cycle.
Instead of explicitly keeping track of the identifications between modular
symbols, we do the following trick:

1n fact, we can be slightly more clever than this and only introduce denominators that are
Powers of 2.
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(1) Construct the Hermite normal form Myer(v) of the lift M(v) (see
[Coh93, §2.4] and Exercise 7.5). Record the transformation matrix
U € GL4(Z) such that UM(v) = Myer(v).

(2) Choose a reducing point w for Myer(v).
(3) Then the reducing point for M(v) is U~"u.

This T- ivari if v, v/ are submod: symbols of & with
~-v = v’ and with reducing points u, ’, we have yu = u’. The reason is that
the Hermite normal form Miye(v) is a uniquely determined representative
of the GLy(Z)-orbit of M(v) [Coh93]. Hence if YM(v) = M(v'), then
Myer(v) = Mper (V).

After computing all reducing points, we apply the appropriate trans-
formation law. The result will be a chain of 1-sharblies, each of which has
(conjecturally) smaller norm than the original 1-sharbly u. We output these
1-sharblies if they are reduced; otherwise they are fed into the reduction algo-
rithm again. Eventually we obtain a reduced 1-sharbly cycle & homologous
to the original cycle £.

The final step of the algorithm is to rewrite & as a cocycle on W. This
is easy to do since the relevant cells of W are in bijection with the reduced
1-sharblies. There are some nuisances in keeping orientations straight, but
the computation is not difficult. We refer to [AGMO2] for details.

A.5.13. We now give some examples, taken from [AGMO2], of Hecke eigen-
classes in H3(Ty(N);C) for various levels N. Instead of giving a table
of eigenvalues, we give the Hecke polynomials. If 3 is an eigenclass with
T(1,k)(8) = a(l, k)8, then we define

H(B,1) = Y (—1)1*E=D/20(, k) X* € C[X].
7

For almost all , after putting X = [~* where s is a complex variable, the
function H (8, s) is the inverse of the local factor at I of the automorphic
representation attached to 8.

Example A.28. Suppose N = 11. Then the cohomology H*(To(11);C) is
2-dimensional. There arc two Hecke eigenclasses uy, uz, each with rational
Hecke cigenvalues.
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u T, (T—4X)(1 —8X)(1 + 2X +2X?)
T3 (1-9X)(1 - 27X)(1 + X +3X?)
T (1-25X)(1 - 125X)(1 — X +5X?)
T (1-49X)(1 = 343X)(1 +2X +7X?)
u T (T—X)(1 - 2X)(1 +8X + 32X7)
T (1= X)(1-3X)(1+9X +243X?)
T (1-X)(1-5X)(1 - 25X +3125X2)
T (1 X)(1 = 7X)(1 + 98X + 16807X2)

Example A.29. Suppose N = 19. Then the cohomology H*(I'(19);C)
is 3-dimensional. There are three Hecke eigenclasses u,us,us, each with
rational Hecke eigenvalues.

U T, (T—4X)(1 - 8X)(1 +2X?)
T3 (1-9X)(1 - 27X)(1 +2X +3X2)
T (1 —25X)(1 - 125X)(1 — 3X +5X?)
u 3 (T=X)(1 —2X)(1+32X%)
T3 (1= X)(1 - 3X)(1 + 18X + 243X?2)
T5 (1- X)(1 —5X)(1 - 75X +3125X2)
u3 Ty (T=2X)(1 - 4X)(1 + 3X +8X?)
T3 (1-3X)(1-9X)(1+5X +27X?)
T5 (1-5X)(1—25X)(1 + 12X +125X2)

In these examples, the cohomology is completely accounted for by the
Eisenstein summand of (A.2.8). In fact, let Tj(N) C SL2(Z) be the usual
Hecke congruence subgroup of matrices upper-triangular modulo N. Then
the cohomology classes above actually come from classes in H'(Tj(N)), that
is from holomorphic modular forms of level N.

For N = 11, the space of weight two cusp forms Sy(11) is 1-dimensional.
This cusp form f lifts in two different ways to H3(I'g(11); C), which can be
seen from the quadratic part of the Hecke polynomials for the ;. Indeed,
for u; the quadratic part is exactly the inverse of the local factor for the L-
function attached to f, after the substitution X = I*. For uy, we see that
the lift is also twisted by the square of the cyclotomic character. (In fact the
linear terms of the Hecke polynomials come from powers of the cyclotomic
character.)

For N = 19, the space of weight two cusp forms S2(19) is again 1-
dimensional. The classes u; and up are lifts of this form, exactly as for
N = 11. The class u3, on the other hand, comes from Sy(19), the space of
weight 4 cusp forms on Tj(19). In fact, dim S;(19) = 4, with one Hecke
eigenform defined over Q and another defined over a totally real cubic
extension of Q. Only the rational weight four eigenform contributes to
H5(T(19);C). One can show that whether or not a weight four cuspidal
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eigenform f contributes to the cohomology of To(N) depends only on the
sign of the functional equation of L(f, s) [Wes]. This phenomenon is typical
of what one encounters when studying Eiscnstein cohomology.

In addition to the lifts of weight 2 and weight 4 cusp forms, for other
levels one finds lifts of Eisenstein serics of weights 2 and 4 and lifts of cus-
pidal cohomology classes from subgroups of SLy(Z). For some levels one
finds cuspidal classes that appear to be lifts from the group of symplectic
similitudes GSp(4). More details can be found in [AGM02, AGM].

A.5.14. Here are some notes on the reduction algorithm and its implemen-
tation:

* Some additional care must be taken when selecting reducing points
for the submodular symbols of u. In particular, in practice one
should choose w for v such that 3 [[v(w)|| is minimized. Similar
remarks apply when choosing a subdivision of the crosspolytopes
in Section A.5.10.

o In practice, the reduction algorithm has always terminated with
a reduced 1-sharbly cycle £ homologous to . However, at the
moment we cannot prove that this will always happen.

 Experimentally, the efficiency of the reduction step appears to be
comparable to that of Theorem A.22. In other words the depth
of the “reduction tree” associated to a given 1-sharbly u seems to
be bounded by a polynomial in loglog ||ul|. Hence computing the
Hecke action using this algorithm is extremely efficient.

On the other hand, computing Hecke operators on SLy is still a
much bigger i lative to the level —than on SLy and
SLs. For example, the size of the full retract W modulo To(p) is
roughly O(p®), which grows rapidly with p. The portion of the
retract corresponding to H® is much smaller, around p?/10, but
this still grows quite quickly. This makes computing with p > 100
out of reach at the moment.

The number of Hecke cosets grows rapidly as well, e.g., the
number of coset representatives of T(1,2) is I* + 1> + 202 + 1+ 1.
Hence it is only feasible to compute Hecke operators for small I; for
large levels only [ = 2 is possible.

Here are some numbers to give an idea of the size of these
computations. For level 73, the rank of H® is 20. There are 39504
cells of codi ion 1 and 4128 top-di i cells in W modulo
I'9(73). The computational techniques in [AGMO02] used at this
level (a Lanczos scheme over a large finite field) tend to produce
sharbly cycles supported on almost all the cells. Computing 7'(2,1)
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requires a reduction tree of depth 1 and produces as many as 26
reduced 1-sharblies for cach of the 15 nonreduced Hecke images.
Thus one cycle produces a cycle supported on as many as 15406560
1-sharblies, all of which must be converted to an appropriate cell
of W modulo I'. Also this is just what needs to be done for one
cycle; do not forget that the rank of H? is 20.

In practice the numbers are slightly better, since the reduction
step produces fewer 1-sharblies on average and since the support of
the initial cycle has size less than 39504. Nevertheless the orders
of magnitude are correct.

o Using lifts is a convenicnt way to encode the global T-identifications
in the cycle &, since it means we do not have to maintain a big data
structure keeping track of the identifications on 9€. However, there
is a certain expense in computing the Hermite normal form. This is
balanced by the benefit that working with the data ® associated to
£ allows us to reduce the supporting 1-sharblies u independently.
This means we can cheaply parallelize our computation: each 1-
sharbly, encoded as a 4-tuple (u,n(u), {v},{M(v)}), can be han-
dled by a separate computer. The results of all these individual
computations can then be collated at the end, when producing a
W-cocycle.

A6. C and Open Prot

A.6.1. We conclude this appendix by giving some complements and de-
scribing some possible directions for future work, both theoretical and com-
putational. Since a full explanation of the material in this section would
involve many more pages, we will be brief and will provide many references.

A.6.2. Perfect Quadratic Forms over Number Fields and Retracts.
Since Voronol’s pioneering work [Vor08], it has been the goal of many to
extend his results from Q to a general algebraic number fild F. Recently
Coulangeon [Cou01], building on work of Icaza and Baeza [Ica97, BI97],
has found a good notion of perfection for quadratic forms over number
fields'2. One of the key ideas in [Cou01] is that the correct notion of equiv-
alence between Humbert forms involves not only the action of GLy(6),
where O is the ring of integers of F, but also the action of a certain con-
tinuous group U related to the units 675 One of Coulangeon’s basic results
is that there are finitely many equivalence classes of perfect Humbert forms
modulo these actions.

12Such forms are called Humbert forms in the literature.
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On the other hand, Ash’s original construction of retracts [Ash77] intro-
duces a geometric notion of perfection. Namely he generalizes the Voronoi
polyhedron T1 and defines a quadratic form to be perfect if it naturally in-
dexes a facet of I. What is the connection between these two notions? Can
one use Coulangeon’s results to construct cell complexes to be used in coho-
mology computations? One tempting possibility is to try to use the group
U to collapse the Voronoi cells of [Ash77] into a cell decomposition of the
symmetric space associated to SL,(F).

A.6.3. The Modular Complex. In his study of multiple (-values, Gon-
charov has recently defined the modular complez M* [Gon97, Gon98]. This
is an n-step complex of GLy(Z)-modules closely related both to the proper-
ties of multiple polylogarithms cvalua:ed at uy, the Nth roots of unity, and
to the action of Gg on my,y = @} (' \ {0,00, zx}), the pro-l completion of
the algebraic fundamental group of P! . {0, 0o, un}.

Remarkably, the modular complex is very closely related to the Voronot
decomposition ¥. In fact, one can succinctly describe the modular com-
plex by saying that it is the chain complex of the cells coming from the
top-dimensional Voronoi cone of type An. This is all of the Voronoi de-
composition for n = 2,3, and Goncharov showed that the modular complex
is quasi-isomorphic to the full Voronoi complex for n = 4. Hence there is
a precise relationship among multiple polylogarithms, the Galois action on
1 n, and the cohomology of level N' of SLn(Z).

The question then arises, how much of the cohomology of congruence
subgroups is captured by the modular complex for all n? Table A.3.2 in-
dicates that asymptotically very little of the Voronoi decomposition comes
from the A, cone, but this says nothing about the cohomology. The first
interesting case to consider is n = 5.

A.6.4. Retracts for Other Groups. The most general construction of
retracts W known [Ash84] applies only to linear symmetric spaces. The
most familiar example of such a space is SLy(R)/SO(n); other examples
are the symmetric spaces associated to SL, over number fields and division
algebras.

Now let I' C G(Q) be an arithmetic group, and let X = G/K be the
associated symmetric space. What can one say about cell complexes that
can be used to compute H*(T;.#)? The theorem of Borel-Serre mentioned
in Section A.3.3 implies the vanishing of H*(I';.#) for k > v := dim X — g,
where ¢ is the Q-rank of T. For example, for the split form of SLy, the
Q-rank is n — 1. For the split symplectic group Sp,,, the Q-rank is n.
Moreover, this bound is sharp: there will be coefficient modules .# for
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which H”(L';.#) # 0. Hence any minimal cell complex used to compute the
cohomology of T should have dimension v.

Ideally one would like to see such a complex realized as a subspace
of X and would like to be able to treat all finite index subgroups of T'
simultancously. This leads to the following question: is there a -equivariant
deformation retraction of X onto a regular cell complex W of dimension v?

For G = Sp,, McConnell and MacPherson showed that the answer is yes.
Their construction begins by realizing the symplectic symmetric space Xsp
as a subspace of the special linear symmetric space Xs.. They then construct
subsets of Xg, by intersceting the Voronoi cells in Xsy, with Xs. Through
explicit computations in coordinates they prove that these intersections are
cells and give a cell decomposition of Xg,. By taking an appropriate dual
complex (as suggested by Figures A.3.2 and A.3.3 and as done in [Ash77]),
they construct the desired cell complex W.

Other progress has been recently made by Bullock [Bul00], Bullock and
Connell [BCO6], and Yasaki [Yas05b, Yas05a] in the case of groups of Q-
rank 1. In particular, Yasaki uses the tilings of Saper [Sap97] to construct an
explicit retract for the unitary group SU(2, 1) over the Gaussian integers. His
method also works for Hilbert modular groups, although further refinement
may be needed to produce a regular cell complex. Can one generalize these
techniques to construct retracts for groups of arbitrary Q-rank? Is there an
analogue of the Voronoi decomposition for these retracts (i.e., a dual cell
decomposition of the symmetric space)? If so, can one generalize ideas in
Sections A.4-A.5 and use that generalization to compute the action of the
Hecke operators on the cohomology?

A.6.5. Deeper Cohomology Groups. The algorithm in Section A.5 can
be used to compute the Hecke action on H*~!(T). For n > 4, this group
no longer contains cuspidal cohomology classes. Can one generalize this
algorithm to compute the Hecke action on deeper cohomology groups? The
first practical case is 7 = 5. Here v = 10, and the highest degree in which
cuspidal cohomology can live is 8. This case is also interesting since the
cohomology of full level has been studied [EVGS02].

Here are some indications of what one can expect. The general strategy
is the same: for a k-sharbly € representing a class in H"~*(T'), begin by I'-
equivariantly choosing reducing points for the nonunimodular submodular
symbols of &. This data can be packaged into a new k-sharbly cycle as in
Section A.5.7ff, but the crosspolytopes must be replaced with hypersimplices.
By definition, the hypersimplex A(n, k) is the convex hull in R™ of the points
{ies €}, where I ranges over all order k subsets of {1,...,n} and ey, ..., e,
denotes the standard basis of R".
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The simplest example is n = 2, k = 2. From the point of view of

l this is even less i ing than n = 2, k = 1, since now we are

computing the Hecke action on H~'(I')! Nevertheless, the geometry here
illustrates what one can expect in general.

Each 2-sharbly in the support of & can be written as [v1,v2,v3, v4] and
determines six submodular symbols, of the form [v;,v;], i # j. Assume for
simplicity that all these submodular symbols are i Let w;;
be the reducing point for [v;,v;]. Then use the ten points vy, wij to label the
vertices of the hypersimplex A(5,2) as in Figure A.6.1 (note that A(5,2) is
4-dimensional).

Figure A.6.1.

The boundary of this hypersimplex gives the analogue of (A.5.4). Which
2-sharblies will appear in £? The boundary 9A(5,2) is a union of five
and five octahedra. The outer will not appear in &,
since that is the analogue of the left side of (A.5.4). The four octahedra
sharing a triangular face with the outer tetrahedron also will not appear,
since they disappear when considering ¢ modulo T. The remaining four
dra and the central survive to & and i the right
side of the analogue of (A.5.4). Note that we must choose a simplicial
subdivision of the central octahedron to write the result as a 2-sharbly cycle
and that this must be done with care since it introduces a new submodular
symbol.
If some submodular symbols are unimodular, then again one must con-
sider iterated cones on hypersimplices, just as in Section A.5.10. The ana-
logues of these steps become more complicated, since there are now many
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simplicial subdivisions of a hypersimplex'®. There is one final complication:
in general we cannot use reduced k-sharblies alone to represent cohomology
classes. Thus one must terminate the algorithm when [|€]| is less than some
predetermined bound.

A.6.6. Other Linear Groups. Let F be a number field, and let G =
Ry/q(SLn) (Example A.2). Let T C G(Q) be an arithmetic subgroup. Can
one compute the action of the Hecke operators on H*(T')?

There are two completely different approaches to this problem. The first
involves the generalization of the modular symbols method. One can define
the analogue of the sharbly complex, and can try to extend the techniques
of Sections A.4-A.5.

This technique has been extensively used when F is imaginary qua-
dratic and n = 2. We have X = SLy(C)/SU(2), which is isomorphic to
3-dimensional hyperbolic space bs. The arithmetic groups I' C SLy(€p)
are known as Bianchi groups. The retracts and cohomology of these groups
have been well studied; as a representative sample of works we mention
[Men79, EGM98, Vog85, GS81).

Such groups have Q-rank 1 and thus have cohomological dimension 2.
One can show that the cuspidal classes live in degrees 1 and 2. This means
that we can use modular symbols to investigate the Hecke action on cuspidal
cohomology. This was done by Cremona [Cre84] for euclidean fields F. In
that case Theorem A.22 works with no trouble (the euclidean algorithm is
needed to construct reducing points). For noneuclidean fields further work
has been done by Whitley [Whi90], Cremona and Whitely [CW94] (both
for principal ideal domains), Bygott [Byg99] (for F = Q(v/=5) and any
field with class group an elementary abelian 2-group), and Lingham [Lin05]
(any field with odd class number). Putting all these ideas together allows
one to generalize the modular symbols method to any imaginary quadratic
field [Cre].

For F imaginary quadratic and n > 2, very little has been studied.
The only related work to the best of our knowledge is that of Staffeldt
[Sta79]. He determined the structure of the Voronof polyhedron in detail
for Rpyq(SLs), where F = Q(v/=1). We have dim X = 8 and v = 6. The
cuspidal cohomology appears in degrees 3,4,5, so one could try to use the
techniques of Section A.5 to investigate it.

Similar remarks apply to F real quadratic and n = 2. The symmetric
space X ~ b x b has dimension 4 and the Q-rank is 1, which means v = 3.
U the cuspidal cohomology appears only in degree 2, which

3indeed, computing all simplicial subdivisions of A(n, k) is a difficult problem in convex
geometry.
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means modular symbols cannot see it. On the other hand, 1-sharblies can see
it, and so one can try to use ideas in Section A.5 here to compute the Hecke
operators. The data needed to build the retract W already (essentially)
appears in the literature for certain fields; see for example [Ong86].

The second approach shifts the emphasis from modular symbols and the
sharbly complex to the Voronof fan and its cones. For this approach we must
assume that the group I is iated to a self-adjoint hi cone
over Q. (cf. [Ash77]). This class of groups includes arithmetic subgroups
of Ryp/q(SLn), where F is a totally real or CM field. Such groups have all
the nice structures in Section A.3.2. For example, we have a cone C with a
G-action. We also have an analogue of the Voronoi polyhedron II. There is
a natural compactification C of C obtained by adjoining certain self-adjoint
homogeneous cones of lower rank. The quotient T'\C is singular in general,
but it can still be used to compute H*(T;C). The polyhedron IT can be
used to construct a fan ¥ that gives a I'-equivariant decomposition of all
of C. But the most important structure we have is the Voronoi reduction
algorithm: given any point € C, we can determine the unique Voronoi
cone containing .

Here is how this setup can be used to compute the Hecke action. Full
details are in [Gun99, GMO03]. We define two chain complexes CY and
CR. The latter is essentially the chain complex generated by all simplicial
rational polyhedral cones in C; the former is the subcomplex generated by
the Voronoi cones. These are the analogues of the sharbly complex and the
chain complex associated to the retract W, and one can show that either
can be used to compute H*(I';C). Take a cycle £ € CY representing a
cohomology class in H*(T'; C) and act on it by a Hecke operator T. We have
T(¢) € CE, and we must push T'(€) back to C¥.

To do this, we use the linear structure on C to subdivide T°(€) very finely
into a chain &'. For each 1-cone 7 in suppé’, we choose a 1-cone p, € C~\.C
and assemble them using the combinatorics of ¢ into a polyhedral chain €”
homologous to &. Under certain conditions involved in the construction of
&, this chain ¢ will lie in CY.

We illustrate this process for the split group SLa; more details can
be found in [Gun99). We work modulo homotheties, so that the three-
dimensional cone C' becomes the extended upper half plane b* := HUQU{oc},
with 8C passing to the cusps b* ~ . As usual top-dimensional Voronot
cones become the triangles of the Farey tessellation, and the cones p, be-
come cusps. Given any z € b, let R(z) be the set of cusps of the unique
triangle or edge containing z (this can be computed using the Voronoi re-
duction algorithm). Extend R to a function on b* by putting R(u) = {u}
for any cusp u.
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In b, the support of T(€) becomes a geodesic 4 between two cusps u,
«/, in other words the support of a modular symbol [u,u/] (Figure A.6. 2)
Subdivide 4 by choosing points o, ...,z, such that &g = u, z, =
and R(z;) N R(zi31) # @. (This is easily done, for example by repeat-
edly barycentrically subdividing s.) For each i < n choose a cusp g; €
R(x;) N R(z:41), and put g, = u'. Then we have a relation in H':

(A6.1) [, '] = [go, @] + -+ + [gn-1,n)-

Moreover, each [gi, gi+1] is unimodular, since g; and gi. are both vertices
of a triangle containing ;1. Upon lifting (A.6.1) back to CE, the cusps ¢;
become the 1-cones p, and give us a relation T(€) = ¢” € CY.

Figure A.6.2. A subdivision of ; the solid dots are the z. Since the
; lie in the same or adjacent Voronoi cells, we can assign cusps to them
to construct a homology to a cycle in CY

A.6.7. The Sharbly Complex for General Groups. In [Gun00b] we
generalized Theorem A.22 (without the complexity statement) to the sym-
plectic group Sp,,. Using this algorithm and the symplectic retract [MM93,
MMS89], one can compute the action of the Hecke operators on the top-
degree cohomology of subgroups of Spy(Z).

More recently, Toth has investigated modular symbols for other groups.
He showed that the unimodular symbols generate the top-degree cohomology
groups for I an arithmetic subgroup of a split classical group or a split group
of type Eg or E7 [Tot05]. His technique of proof is completely different from
that of (Gun00b]. In particular he does not give an analogue of the Manin
trick. Can one extract an algorithm from Toth’s proof that can be used to
explicitly compute the action of the Hecke operators on cohomology?

The proof of the main result of (Gun0Ob] uses a description of the re-
lations among the modular symbols. These relations were motivated by the
structure of the cell complex in [MM93, MMS89]. The modular symbols
and these relations are analogues of the groups Sy and S, in the sharbly com-
plex. Can one extend these combinatorial constructions to form a symplectic
sharbly complez? What about for general groups G?

Already for Spy, resolution of this question would have immediate arith-
metic applications. Indeed, Harder has a beautiful conjecture about certain
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congruences between holomorphic modular forms and Siegel modular forms
of full level [Hara]. Examples of these congruences were checked numerically
in [Hara] using techniques of [FvdG] to compute the Hecke action.

However, to investigate higher levels, one needs a different technique.
The relevant cohomology classes live in H*~}(I';.#), so one only needs
to understand the first three terms of the complex Sy «— S; « S,. We
understand Sp, S1 from [Gun0Ob); the key is understanding Sy, which
should encode relations among elements of S;. If one could do this and
then could generalize the techniques of [Gun00a), one would have a way to
investigate Harder’s conjecture.

A.6.8. Generalized Modular Symbols. We conclude this appendix by
discussing a geometric approach to modular symbols. This complements
the algebraic approaches presented in this book and leads to many new
interesting phenomena and problems.

Suppose H and G are connected semisimple algebraic groups over Q with
an injective map f: H — G. Let Ky be a maximal compact subgroup of
H = H(R), and suppose K C G is a maximal compact subgroup containing
f(Kn). Let X = G/K and Y = H/Ky;.

Now let ' C G(Q) be a torsion-free arithmetic subgroup. Let I'y =
F7H(T). We get amap I'y\Y — I\ X, and we denote the image by S(H,T).
Any compactly supported cohomology class £ € HI™Y (I'\X;C) can be
pulled back via f to I'z\Y and integrated to obtain a complex number.
Hence S(H,T) defines a linear form on H3™Y(T'\X;C). By Poincaré du-
ality, this linear form determines a class [S(H,T)] € HomX~dim¥ D\ x; C),
called a generalized modular symbol. Such classes have been considered by
many authors, for example [AB90, SV03, Har05, AGR93].

As an example, we can take G to be the split form of SL;, and we can
take f: H — G to be the inclusion of connected component of the diagonal
subgroup. Hence H =~ Rso. In this case K is trivial. The image of Y in
X is the ideal geodesic from 0 to co. One way to vary f is by taking an
SLa(Q)-translate of this geodesic, which gives a geodesic between two cusps.
Hence we can obtain the support of any modular symbol this way. This
example generalizes to SLy to yield the modular symbols in Section A.4.
Here H ~ (R > 0)"~1. Note that dimY =n — 1, so the cohomology classes
we have constructed live in the top degree HY(I'\X;C)

Another family of examples is provided by taking H to be a Levi factor
of a parabolic subgroup; these are the modular symbols studied in [AB0].

There are many natural questions to study for such objects. Here are
two:
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a'M 0
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o Under what conditions on G, H, I'is [S(H,T')] nonzero? This ques-
tion is connected to relations between periods of automorphic forms
and functoriality lifting. There are a variety of partial results
known; sec for example [SV03, AGR93].

© We know the usual modular symbols span the top-degree cohomol-
ogy for any arithmetic group T'. Fix a class of generalized modular
symbols by fixing the pair G, H and fixing some class of maps f.
How much of the cohomology can one span for a general arithmetic
group ' C G(Q)?

A simple example is given by the Ash-Borel construction for
G = SLg and H a Levi factor of a rational parabolic subgroup P
of type (2,1). In this case H = SL(R) x R and sits inside G via

0

For I' C SL3(Z) these symbols define a subspace
Sy C H¥(T\X;C).

Are there T for which S, equals the full cohomology space? For
general T' how much is captured? Is there a nice combinatorial way
to write down the relations among these classes? Can one cook
up a generalization of Theorem A.22 for these classes and use it to
compute Hecke eigenvalues?

b ) g7', MEeSLy(R), a€Rsy, g€SLy(Q).



