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BRIE
By the theta lift from GO(2,2), we give a construction of generic automorphic forms on GSpa(A)
which are fixed by paramodular groups. We can say our construction is canonical, by the reason why
they are not vanishing and why they have acceptable local [-factors and ¢-factors at bad primes.

Introduction.

For a given GSpy(Q;)-valued motivic Galois representation p of Go — Gal(Q/Q), an automorphic
representation 77, of GSp2{ Ay ) is expected to correspond. Yoshida [?] conjectured that for every abelian
surface A over Q, there exists a holomorphic Siegel modular form F4 of weight 2 of a suitable level
whose spinor L-function L7 (s, F,1} equals the Hasse-Weil zeta function of A. This is one of such
type of conjecutre, and the evidences are given by the Yoshida lift, a theta lift from GO(4) to GSp(2).
However the thoery of holomorphic newform was not established in the GSp(2)-case. So, it is hard to
describe the level of the conjectural form F 4. Recently, B. Roberts and R. Schmidt [?] have established the
local generic newform theory in the trivial central character case as follows. Let k, be a nonarchimedean
local field and p be the prime ideal of the ring of integer o of k. Let 7 — W{m, 1, 1) be a local generic
representaion., i.e., 77 has a Whitakker model. Supposc that the central character 775 is trivial. Then there

exists the unique (up to scalar) newvector W ¢ W(m, ¢ 1) fixed by the local paramodular group
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of conductor N € Z o, where (1) is the similitude norm of # € GSpa(k, ). The non-negative integer

Nz is intrerpreted as the conductor of 77, and characterized by the local functional equation L(1 —s, 71) —
1 - . L

+ N5 *L(s, m) with the contragredient 7 of 7. So, by this beautiful newform theory, it is natural to

provide the following parrarel conjecture.

CONJECTURE 1 For every abelian surface A over Q, there exists a generic Siegel modular form F 4 of weight
(2,0) fixed by [1, Kp(c(pa,p)) with trivial central character such that LV (s — %, Fa)o = L(s, ij(A,QI));,

at every place v. Here c(p 4,p) is the conductor of the local Galois representation p 4, associated to A.

* This work was supported by Grant-in-Aid for JSPS Fellows.



REMARK 0.1 We don't add the condition of the functional sign + as in Yoshida's original conjecture.

Of course, if this conjecture is true, then Hasse’s conjecrture on the functional equation is true in precise
form given by Serre. In this paper, we will give the evidences for this conjecture by the theta lift from

GO(2,2) in the following cases (c.f. Theorem 2?

(A) Let L be a real quadratic field with the discriminant d;, and f be a Hilbert newform of multiple
weight (2,2) of level n. Then there exists F e Mao([1, Kplord (N o(n)d; ))) with P (s, F)p —
L(s, f)o, atevery place v of Q.

(B) Let fi, f> be elliptic newforms of weight 2 with level Ny, Np. Then there exists F € Mp_,o(ﬂ,, Ky(ord,(N1N>2))
with L*P" (s, F)u — L(s, f1)oL(s, f2)e at every place v of Q.

(B) means that all jacobian varieties of elliptic modular curves of genus 2 are Siegel modular in the
generic sence. (A) means all motives of Hilbert modular forms over a real quadratic field of weight (2,2)
are also Siegel modular, e.g, jacobian of Shimura curves obtained by indefinite quaternion algebras, and
abelian surface with complex multiplication of quartic CM-fields.

In this paper, more generally than the cases described as above, we will give the construction of
Hilbert-Siegel modular forms fixed by paramodular groups in the trivial central character case. Fur-
ther in the nontrivial central character case also, we give good modular forms semi-stable on “seni-
paramodular groups (c.f. Definition ??, and provide a conjecture (p.p ) for the case. We consider our
construction is canonical, from the reason why they are not vanishing and why they have acceptable
local L-factors and e-factors at bad primes. Qur construction will be applied for explicit research in a
nearly future.

On the other hand, we remark that holomorphic discrete series representation of G5p(2) cannot cover
all the L-functions of abelian surfaces. Indeed, suppose that one of f1, f> in (B) above doesn’t correspond
to automorphic representations of definite quaternion algebras in the sence of Jacquet-Langlands [?]
(e.g., one of elliptic curves Ey, Ey corresponds to unramified or ramified principal series representation
of GL2(Qp) at every p). In this case, we cannot use the Yoshida lift to construct a holomorphic modular
form F with L;Pi” (s,F) = Ls{(s, f1)Ls(s, f2) (Sisasetof finitcly many primes and Lg means the exception
of Euler factors of 5). Further, suppose that there exists such a holomorphic F. Then, the standard L-

function
LI(s, F) = Csls) 'Lals + Lpg 0 pp, A7) = L) Ls(s fu < f2) 02)

has, at least, a simple pole at s — 1 where OF is the Galois representation of $¢ associated to f;. Accord-
ing to Kudla-Rallis-Soudry [?], F is liftable to an automarpchic form of a compact orthogonal group of
rank 4: i.e,, Sp(2) — O(4) which is the converse direction of the Yoshida lift. By this reason, we cannot
hope holomorphic Siegel modular forms for such abelian surfaces. (Contrary to this, the theta lift from
0O(2,2) can provide the desired generic Siegel modular forms, which is not holomorphic.) Following
(?2), we put

Zs(s,04) = Lsls) 'Ls(s 4+ Lpa, A7)
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If Zs(1,p4) &€ C7, then the modularity of A also comes down from (conjectual) generic cuspidal repre-
sentation of GLy{ Ag) by the transfer lift, and we hope this value is interpreted as a size of some Selmer
group (and is not zero) like in the elliptic modular case. We remark that it is possible to give the corre-
ponding form F,4 by theta lifts from orthogonal groups of rank 4, if and only if —ord._1Zs(s,pa, x) = 1

for some quadratic charqacter x. Indeed,

(A) If A is isogeneous to a Hilbert motief, ic., L(s, Hﬁ,(A,Q,)) — L{s, f) for a Hilbert cuspform f
over L, then —ord\:IZS(S,pA,/\',_/Q') > 1. Furhter, if and only if —ord_\._lZS(s,p‘,;,)(,v/Q) >2,Ais
isogeneous to the Weil restriction Res; ;o (E) of the definition of the field, for a Q-curve E defined
over L, and F, is a noncuspform.

(B) If A isisogeneous to a product of elliptic curves Ey x Ey, then —ord._1Zs(s,p4) = 1. Further, if and

only if —ord._1Zs(s,pa) > 2, E} is isogencous to Ez, and Fu is a noncuspform.

Since the Yoshida conjecture is (and conjecture 1 is also, perhaps) still a difficult problem, to show the
inverse directions of above cases may be a reasonble problem. Related to the case (A), we have the fol-
lowing topic, which is the reason why we attend the condition yg, — 1 in the conjecture 1. There exists
a pair of cuspform F and a non-cuspform E such as L*PM (s, F) — LP"(s,E) — L{(s, H. (Jac(C),Q;)) for
the hyper elliptic curve C : y* = x* — x (c.f. [?]) although F doesn’t belongs to CAP representations. We
will discuss this accidental case and give an answer Theorem ?? for the question when such an accident
occurs, and give a characterization of non CAP cuspidal representation by standard L-function.
Acknowledgement: We thanks to Professor Yoshida’s many helpful advice and encouragements.
Notation: For an abel group H, X(H) denotes the group of quasi-characters of H and X!'(H) does that
of unitary characters. For an adelized group Ga, we denote by A(Ga ) the set of automorphic forms
on Gp, and by TT(Ga ) that of irreducible automorphic representations. If a function f on a group
G satisties f(gu) — x{u)f({g), ¢ € G, u & K tor a fixed character Y on a certain subgroup K of G,

we say fis ‘x-semi stable on K or ‘semi stable on K. If x is trivial, we say stable on K, simply. If
b
d
d = d,. Foraring A and an element x £ A, we denote the following elements in My (A) in this way:

x| f | € GSpm(A) C GLy(A) witha, b, ¢, d of size m, we shall writea — a,, b — by, ¢ — ¢,, and

1

e = n(x) = | 0 ' v

3 r0 ) 1 X s
; | ay = a(x) — | P |, we —w(x) —| ‘? 0 |, e —olx) — | 0 o)

For a symmetric matrix Q € M,(A),and X € M, ,,(A), we write Q|X] = 'XQX &€ M,,(A). By uy with

8 € R, we mean the clement | cosf - sind | & SO2(R).

sinfd  cosf

1 theta lift from A(GLy(A))? to A(GSpa(A))
Let k be a totally real field of degree d with ring o of integers. Tix ¢ — ¢, € X(kK\A) by

{ Poo(z) — [T expl(rmiz;) for = — (21,...,24) € keo.

Pp(z) = exp(—mi - Try, s, (the fractional part of z)) forz € ky.
We require the following conditions for unitary ¢, o2 € TT{GL2(A)):

1) Atleast, one of o or o3 is cuspidal.



2) o1 and 0, have an idetical central character 1.
3) At each archimedean place oo; of k, both of |, and 2, are discrete series representation with an

identical lowest weight x;(> 1).

Automorphic forms of GLy(A): (?2484F For an fractional ideal a,b C o, we define the congruence
subgroups of GLa(a) by

To(a) = {7 € GLy(0) jcy € a}; Topla,b) — {y € Tola) | b, € b}.

At each finite place p of k, we define the local congruence subgroups To(p™ ), Too(p”, p") < GLa(o, ),
similarly. When it is clear that we do a local discussion, we write them as

To(m) —{v € GLa(op) | ¢y € p™}; Tooln, m) — 4y e Ty(m) | by € p"}.

Let W(i,0w) be the space of Whittaker functions belonging to o with respect to .. According to p.71

of Weil [?], we can choose the following Whitakker function belonging to W (e, Yoo, ) = W(Cis,, oo, },

| e

Wico, (211 caytig) — ( )rqvmj(,\‘)W/zf s
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for x € R,y,z € R, uy € SO2(R) and r — 1 or 0. Here Wit denotes Whittaker’s function in the
original sense associated to (—2’\— LT)' At finite place © — p, W(oy,, ¢,) has a newvector which is
‘semi-stable on Ty(e)’ for the conductor ¢ of p. Let p°* — o, be the local different of kp, /Q, (then,

Pplp ¢y —1, Polp ¢ 1} £ 1). Here we state a lemma:
LEMMA 1.1 If W € Wy, 0p) is stable on N(—d) :— {ny | x 2 p "}, then W(a(@")) — O for m € Z ..
This lemma is obtained casily by
Wa(@")n(x)) — Wn(@"x)a(@")) — thp (@"x)W(a{@")). (1.3)
We take Wy, € W(Fyp,, ) and Wy, € W(,, 7, ) so that
Wiy (huy) — 1(d”l YW, Uy, Wap (lius) — yp{ay. YWay (1), (1.4
for u; € Top(e; + 6, —38). We set

ftn) =Y [[Wielach); foth) — Y szi,(a,/z), e GLy(A), (1.5)

tck> U Tk

both of which are automorphic forms on GLy(A ) by Jacquet, Langlands [?].

Schwartz functions: We set the quadratic form in M» (k) by Q[x| — 2det(x), which induces the
bilinear form (x,y) — tr(xy') where 1 is the main involution of Ma{k). We denote by also Q € M;(Q)
the symmetric (integral) matrix associated to the quadratic form. Put H(k) — GL(k)? and H' (k) =
{h = (h1,hy) € H{k) | deth; = dethy}. Define the right action p of H(k)(resp. H{A)) on Ma(k) (resp.
M (A)) by

o(hy, o) )x — h, 1.\‘112, x & Ma(k).



For the theta lift, we prepare Schwartz function ¢, € S(Ma(k:)?) ‘corresponding to’ the above pair
Wi, Why as follows.

(At j-th archimedean place co;) We choose two polynomials of M (R

Pi(x) = <x/[ ]1 ],' J> —idy —ay) — (by +cy), Paix) — ’\/[ ; ! ‘\/ —i{ay +dy) + (cy —dy),

1

so that pl(llﬁll.\"llyz) — ¢ i fip iy, Pg(qulqu:) — o 2Py Define @no, € S(M2(R)?,Cls1,52])
which is homogeneous polynomial of sy, s> by
Pa(soxy —syxa)!if kg < xyp,

X1, %2) = exp( =7 tr(R[x, ¥a] )} Py (31) + s2v2 ) x ¢ =
oo, (X1, X2) = exp(=Ttr(Rlxy, ]I Py (501 + 5272) K{ Py(sox) —$1%2)"  otherwise,

Kij Ky Koy

where a — ;_KZ" and b — ——5—-. Here R — 'R € M,(k) is chosen so that R|x;| — 17_2\.’ + 173’. + C%, + d%“

and x; is regarded as a line vector (so R{xj, x2] — "(R|xy,x2]) € Ma(R)). R is an Hermite’s minimal
majorant of Q,i.e.,, RQ 'R = Q (c.f. §1 of Oda [?]).

(At finite place p) We write o for o, simply, and fix an uniformizer @ — @, € p. Let ¢; be the conductor
of ojp, and ¢ = ¢ +e2. Let f = ¢(#) be the conductor of the central character 17, of 71y, 7. In the case

of | = 0, we define
@p (X1, xp) — the characteristic function of | pp
In the case of | > 0, we define

N VRV S A LC R ML -
Hp(@hy,), if (x1,x2) & | st e | & Ma(o),

Pplx1, X2} —
0, otherwise,
where p° is the different of k, over Qp- Of course, ¢, is the characteristic function of My (a) & Ms(o) at

almost all p. We define a congruence subgroup U,y of H' (k) for m, n € Z -+ by

Uy ={Un. ) e Hl(kp) |y & Toolm + 48, —38),hn & Top(nn+6,-0)}. (1.6)

For (I, hn) € H‘(kp) and (i1, 112) € U, ¢, itholds
plhiu, b)) @a(x, x2) filUnuy) falhaus) — pln, oo xy, xa) f1 (1) fo(ha). (1.7)

But this equality does not hold for (11, 112) belonging to U, | 1 ,, Us en 1. To0(e1 +6, =0 —1) x Tgglez +

0,—0), nor I'gg(e; +6,—0) x Typ(ex +3,—0 — 1). By this condition, ¢, is the key hole for the non-

vanishing of the theta lift, as scen later. By this reason, we said ¢y, is ‘corresponding to” the pair Wy, W,,.

Theta lift: As in section 5.1 of Harris, Kudla {?], we extend Weil representation r — ovory of GSpy »
GOy associated to the additive character ¢ — ¢, and define the theta lift by

8le: LR fr) = / e, @)Xy, x2) fL B Ui dih. 18

@GLBLI= e, >:T< (€M) (xy,x2) f B f2 (k') (1.8)

Here, associated to each element ¢ € GSpa(A\), we choose I — (0, h}y) « GLy(A)? so that v(g) =

det(h)det(h}) *. Weembed A" 3 a+— {a,a) € H'(A).



PROPOSITION 1.2 Af j-th archimedean place oo, of k, the highest weight of the representation of Ux(C) <
).

Ry Ky

Sp2(R) associated to 8(g; fL ™ fo) is (L% ==

PROOF. We treat only the case of ky; < ky;, since the other case is done in the symmetric way. For the
simplicity, we write (z) — exp(miz), and Pi{x;s) — Pi{sixy +52x2), Po(x;8) — Pa(sax) — s1x2) with
x = (x1,x2),5 — "(s51,52). Let ¢, 5(x;5) — @es,(x). Let ¥ denote the restriction of the Weil representaion

Foo, t0 Spa(kes;) = Spa(R). It is sufficient to show that, for every u € U2(C),
r ) @aplx;s) = detiu) P, (v us). (1.9)

Remark that @, ,(x;us) — @, p(X;5)sym, (1}, since they are homogeneous polynoimals of s of degree

B ‘B! A 0 i 1 B'a . .. .
. Y hard 3
P J { 0 5 H Lo il 0 ! i, ifdet(B) # 0. If (22) is

shown for all such u, then (22) holds for evrey 1 & Uz (C) by continuity of ¥/ on the L2-norm. In the case

a + b. We can decompose u — |

of a = b = 0, by the above decomposition of 1 and the well known formula
/ CXp(f/'[,\’z — 2n\/T1/\x)d.r — cxp(—r(,\z), Ae(C,
JR

we can derive from r' (1) ¢ the trivial character on

i )

2 o2 2 12 i 2 o |2 -2
{ vy ! u AN S I e T C Y S Y _1}Nu1((')

[l o

which is a maximal torus of U>(C}, and derive the trivial representation of A + 07 € Ox(R) C U(C).

This implies /(1) is trivial. For general a, b, we shall show

BOBAB !

¥ (x5 = det(u) b 0 s Dgap(xus) (1.10)

I -B'A

which is equivalent to (?2). Here Y | (x;s) is the Fourier transformation of ¥, (x;s) — r/(] | D ox{x;5)

with respect to ¢. Define the differential operator Ay, Az acting on S(Mz(R)%; Clsy, s2]) by

| dac /b

By = i(27) P50 +5202), 82— (270) ' Pa(2D —51Dz), D — [ )0 a7,

‘B 'BAB !
0 B!
Using A;P;(x,s) = Ofori,j — 1,2, we can sce casily

By acting AYA5 on ¥oolyvs) —r'(] [V po0(x;us), we are going to obtain (22) for general a, b.

AN (201, 1) + 202, 2} ) — Pty s) Palyss) (20,00 + 202, 12)), v = (1 v2).
So, we obtain the left hand side of (2?)
AJATYG(x) — /M PUy s Py )" Foly)g (20 1) + 2(x2, y2) Jdydys

by exchanging A; and the integrand. On the other hand, the right hand side of (2?) is obtained by

m

the induction on a,b. Assume (??) holds for a,b. Then, using A Pi(x;¢s) — 0,j = 1,2 for any g



GLy(R) and Aj¢(tr{c - Qlx]) — ¢(tr(c - Qx|)Pi{x;s); Avgo(xhy — Pi{x;ih'hs)eg(xh) for any ‘o —
o e Ma(R), h € GLy(IR), the right hand side of (22) for a + 1, b is obtained in the following way.

det(B)2 (A gp(tr('BA - Qx])) @up(x'B;us) + det(BY y(tr('BA - Q|x|) (A1 @ap(x'B; us))
= det(B)2p(tr('BA - Q|x]))P1(x; BAS) @, (X' B;us) + det(B)2g(tr{'BA - Q[x|))P1(x;i"BBs) @y (X' B; us)
— det(B)2y(tr('BA - Q|x]))Pi{x'B; (A +iB)s)¢, (X' B;us) — det(BY2y(tr('BA - Q|x])) @, 1 ,(x'B;us).

Here we wtite X'B — (agx; + cpXa, bpxy +dgxa). The right hand side of (2?) fora, b + 1 is also obtained in
the following way. Let p(x) := "u'. Using AxP;(x;¢s) — 0,/ — 1,2 forany ¢ € GL2(R) and Ax¢p(xo) —
Py(x;ip(c)s)@o(x) for o =fo e GL2(R),

det(u "B2)((Bap(tr('BA - QI¥])) @up(x' Bius) + tr('BA - Q) (A2gus(x'Bius)) )
= det(u "B?)(¢(tr('BA - Q|x])) P?(\ 0('BA)S) @, (X'Byus) + ¢itr("BA - Q|x])) Pa(x; —ip("BB)s )@, (X By us))
— det(u "BY)p(tr('BA - Q|x]))Pa{x'B; p( A — iB)s) @, (X' By us) — det(u © B2 yp(tr("BA - Q[x|))@up. 1 (X'Byus).

Here remark that p(7) — (u') ' — det(u) ' at the last line. This completes the proof. O

REMARK 1.3 According to Przebinda [?], the irreducible representation 1, associtated to F is a Py-principal
series reperesentation in the sence of p.904 of Moriyama [?] if x\; — ko;, and a discrete series representation

otherwise. Hecne, by [?], it holds

[spin

(5, Moo, ) — 4(2m) =T(s +
which is equal to L(s, 10 ) L(S, G200, ), tp to constant.

In order to describe an local property of 8(g, f1 K f>) at finite place p, we introduce the following concept:

DEFINITION 1.1 (37,-SEMISTABLE ON K, (¢, ])) Define the semi-paramodular group Ky (e, ) of level (¢, ) by

e p o
Kp(e, 1) — ht’.f v e | T Kete) (1.11)
L pt 0 0 0

For np € ky, we say a function f on GSpa(ky) is yy-semistable on Ky (e, 1), if f satisfies

Flzg) = el f(8), flgu) —mpldi)fig), g€ GSpatkp), 2k, u= 7 7 T | €Kplef)
PROPOSITION 1.4 At cvery finite p, (g, fi & fo) is y, '-semistable on Ky e, 1),
PROOF. Let F — 8(g; f1 ® f2). In the case of (1) — | — 0, the assertion is obtained by the same way

as theorem 4.3 of [?]. In the case of | > 0, it is easy to sce that F(g - diag|z, v,z 'y ']) — np(2)F(g) for



¥,z € oy from our setting of ¢,. So, it suffices to show that F(zg) — F(g - diag(1,1,z,2]) = 1, Yz F(as.
Put /i — (a-, 1) withz € 0p . By the definition of the extended Weil representaion rp, we have

F(y-diag|1,1,z,z]} — /

Y trlg b @yixy, x2) f1 B fo(hh:)dh
AR A

YT Matk:
— / Z (g, ei{xy, x2) f1(h) @fv(/lalla ydh
AV

— Z (r{g, me){x, x2) )]p 2 AU & falha)d
JASH YA

The last equality follows from (2??). This completes the proof. U

Whittaker function of 6(g; f1 ® f>): For ¢y, € k, we define a character . (1) = ¢t +c25) &
X(U(k)\U(A)) of the maximal unipotent subgroup

BN
u(m) - {11— C ES;}Z(A)}
0

of Sp2(A ). The global Whittaker function W‘F'“'2 (g)of F € A(CSp>(A}) associated to ¢, ¢, is defined
by [uinuia; Yoo (1) Flug)du. We are going to calculate WY (1. Write f(h) = f1(Un) B fo(hp) with
h = (hy,hp) € HY(A).

./wm\um\, v, ’1(“)(‘//\xuuknuw\\ Z r(‘”’h)(’o(n’"ﬂZ)f(lz)led“

Tixae ) TAMLLRT

' ' ) 00,
- | ww / Y aOeBun(Q i+ v =g )
Je A Npikiy \p;.m,:\A*/MA—;,HHA;m,_\:;'\_M:(‘k":
e, ) e(x, txy + x2) f(hdh du, (1.12)
. (t) 1 Bu) . - ‘ .
where we write u — | ) ) il (Iu) |. Since f is rapidly decreasing, we can exchange the

summation and integration at (2?). All the pair (x, x2) & Mz(ka which may contribute to W,}- 1(1)
should satisfy (x1,x1) — (x1,x2) — 0and (x2,x2) — —1, that is, elements in p{ H{k))-orbit of (0,a 1)
or that of (¢_;,a_1). However, the contribution of p(H' (k) )-orbit of (0,& ;) is found to be zero by
replacing o | to 0 in (22) below. So, we will only see the contribution of the orbit of (v ,a ). Put
Z(k) = {h = (In,hy) € H'(k) | p(yr 1 — 0 polhla | —a ye ke o} =k {{n,ny) | Xy ek},
olk) {zeZ VpUa 1 —a 1} — k" {{ne,n )| x ekl (1.13)

Then (2?) is calculated as

/ / /IH) 1 J//I)‘P(ZT Lo l)f(/l)dlldf

\111‘“\

/ Pl b0 +a ) fUh)dh dt. (1.14)
Foiki HUA :

For every t € A, sy := (ny,1) = (1,n¢) uniquely as an clement in Zo(A)\Z(A) satisfies p(sija_; =
to. 1 +«&_;. Noting

WL inele e +a )fh) —r(Lsd)ete 1,a @t flh),



we can calculate (??) as
' ' . T Fis _ (et Lo ObeUndh. (115
./Zo(k';‘\lll{/»’\‘,./k\[\ r(L e v a gl flsddt dh ./Z“:!\; //w\‘;’(l' Hete e bpth)dh (119)

Here by(h) is

' P fls = B R k) A dtat
./ZM\ZO{A; <‘/k\Al/(t)f( n Iz)dt>dlz /“ '/k\\é\quﬂ V() pln(t Vi )didt,

which is equal to the product W (fi1)W>(/12) of Whittaker functions of f1, f> associated to . We are
going to calculate each local factors of (2?)
I.— / re(L oo a0 )Wy (h ) Wa (1o )dh.
SZgtke H kot
1 .
(The calculation of Ioo,): Suppose k1; — K2; = a. Since p(ay, ayn) (0 1,8 1) — (] Y 1.1 T 1,

the coefficient of s{ in I, € C|s1, 53] is, by substituting s — 1,52 — 0, calculated as
2 / Wh o 1320)° / (—y) “oxp(—mly >+ 24 (x/y)?)) exp2mi(x + iy))dxd” y
IR oE IR )

= —2exp(—2m)(~1)" /

exp(—mry Z)le a2 1;/2(}/)2/] exp(Zm,\'—n.rz}/’z‘)‘)dxd"y
4R JR

N

—2e><p(—27r)(—1)”“/ yexp(—m(y —y 2NWh o 1aly)iid .
AR

At
This is not zero since Wh_, 5 ,_1.,2(y)* > 0. Hence I, # 0. For general pair of (x, 5], we can sec
the coefficient of s{ is not zero by the same way, after acting (d/0s ¥ on Iw,.
(The calculation of [, at good p): By the mapping Ma(k,) 2 ¥ — a(p®)xa(p %) © Malky), we can
assume the conductor —4 of ¢ is 0. By the Twasawa decomposition for GLy, we can take the complete
system of representatives
Zolky WH (k) /Upp — || (@ n(xia@™),al@"))
2r om—n,xTky
where @ is the uniformaizer of p and Ugg is defined in (2?). We calculate

m

Y ey ~ 1t noor - n! ¥
pl@ n(xja(@"),al@")) (v o 1) —( v« e @

0 ¥ L 0 @’ J)

with 2r +m = n. So,r = 0, ifbothof @ "and @" ™ 7 — @" is in 0. By lemma 22, W, (a(@"")) — O for
m < 0. Both of r{1,lt)pp(v.1,1) and Wi (/11 )Wa. (Jin) is not zero, iff (51, h) € Zy(ky)(ny,1)Upp with
¥ € op. Hence Iy, = Wi, (1)Whp (1) # 0.

(The calculation of I, at bad p): We treat only the case of ¢1 > ¢p (then ¢; > 0 automoatically), since
the case of ¢y < ez can be treated symmetrically. By our definition, ¢y is stable on U, ., in the case of

Np = 1 {resp. semi-stable in the csae of 17, 7 1). Consider the representatives such as

a(@)GLao)a(w ) /Toles) = ({1}, « o JH@ W@ )01}y o0ty

Using the Twasawa decomposition for GL, with respect to the compact maximal subgroup
a(@%)GLy(o)a(@ ), we can find at once that all the clements of Zo(kp)\Hl(k,[,)ﬂUgm2 to be

considered are reduced to the following four types.



D-type: (@ n(x)a(@™),x(@")) withm +2r —nand m,n > (;

fi)-type: (@ n(x)a(@™)w(@ )n(s), a(@")) with2r +m +¢; —n >0ands ¢ p ! modulo oy;
fii)-type: (@' n(x)a(@™), a(@")w(@2)n(t)) withm —n+e —2r >0and t € p 2 ! modulo oy;
iw)-type: (@ 'n(xja{@™)w (co‘ m(s), a{@)ew(@ ) n(t)) with2r +m +¢; —n+e¢y,ands € p ! mod-

ulooy, t & p 2 ! modulo 0p.

In the case of 1 — 0 (resp. ex — 0), it is sufficient to consider i) and iii)-types (resp. i) and ii)-types). Let
us calculate the contributions to [, of each types.

i)-type: If we require

p(/z)a 1_[ [N LL“,“‘"‘J&Mz(OPJ

7{0 m'”'J,‘p~ o J

( = p(’ pes 17
then m — 0,and n — 0. So, x € o, is needed. Thus, the total contribution of i)-type is Wi, (1)Wa, (1).
ii)-type: We can assume ¢; > 0, as far as we consider this case. Suppose

meoor .

([ 0 S T ST 0 T Y s X J) B
r - o =
0 @ " ’ [ w0 BARS /

p(h)(v 1,a.1) = [P 1 Maoy ).

Thenm+r < —e; <Oandordp(s) —m —r > 0. Note thatordp (s} —m—r> —ey +1 —m —r > —¢; —
m—r >0 Hence@ " "é € oy fory & p I and Pplo(yln, e a )) = @peloln, (e (a 1))

However we can see the contribution cancels, by using
Wlp(n},lzl) — P ly)Wi (Il (1.16)

iii)-type: We can assume ¢ > 0, as far as we consider this case. We first going to see that, in the case of
t # 0, this type has no contribution. Suppose that

nor nor P noy

D2 fet2 praomo Ty i Thi X p £2 -
oty (o-1,a 1) = (| R A e N T LS E P VAT

Then —m —r =2 0and t@® 7" 77 ¢ op. If @2 " 7 ¢ p, then we can conclude the contribution can-
cels by using (?2). So, we can assume t@% " " ¢ oJ. Further, if m > 0, then 1@ 7 & p and
det{p(Mja 1) — (—@®2 " ")t 7)) — (@2 ")(—@ """ T~ "M Tx) & p, which is a contradic-
tion. So we conclude that m = 0 and ord, (¢) — r + ¢2 — 0. However, as noted before 0 < —p1 —r —

¢a

—r = —{ordy(t) + e2), which is less than zero since t € p 2 1/op. This is a contradiction. In the case of
t =0, since e —m —r > ¢ > 0, the contribution is also founded to be zero by using (??).

iv)-type: We can assume ¢, ez > 0 and will see the contribution of this type is zero. Suppose that

Gt Mot Sfptr Mot B Pu_w a
plhio o1 S9N e o,
@ T Sx@t M T R T st T Sppt M Ty
olh)ja_1 =| o6 My O e oy | € Ma(op).

To begin with, we notice st@® ™ 7 ¢ o. Assume st 7 0. If st@® ™ 7 & p, the contribution can-

cels by (2?). So, we can assume st@> ™ " ¢ o7 . However, under this assumption, t@ ¢ " 7 —

10



1

s 1o “(st@> ™ 7) should be in o, which is impossible since s € p t7 . Consequently, st — 0. Sup-

€2 HMr -
- (s

pose s — 0. Since t@ pel, ordyp(t) +ex —m —r > ¢y > 0 and the contribution cancels by (22).

Suppose t — 0,5 # 0. Then —e; —m —r > 0 from —@ ™ " & p*. Hence ordp(s)+ex—m—r —
ordy(s)+e—ey—m—r>0s0502 " 7 ¢ p,and thus we sce the contribution cancels by (??).
Summing up the above calculations, Wr , (1) is not zero, and F is also not zero.

Novodvorsky zeta integral: Let W(m,, iy |} be the space of Whitakker functions associated to ¢

of m, & Gsz( 1). The Novodvorsky zeta mtegral of W& W(my, ¢ o) twisted by pi € k/ is defined b\

i
Zn(s, W, ) = /k Wi ! Ju)yl® 2dxd”y.

AP TR X 1

According to Lemma 4.1.1 of Roberts, Schmidt [?], if W is semi-paramodular on Ky (¢, {) as in our scnse

(c.f Definition ??), then the Novodvorsky zeta integral is equal to the casier zeta integral
Z{s, W, ) — / Widiagly, y, L) yl® 2puly)d” y.

The calculation of this zeta integral is similar to that of Wr ,(1). That is done by replacing ¢, (x1, x2) to

@plyxy,yx2), and the relation of det{/1;} and det(/12) to that of det(/1y )y and det(/i2). Then, we have

Unfp(]I:
Wep(diagly, y,1,1]) — [yl Y Wip(w'aly@ ))Way(a(@')),
1-0
and thus Z(s, Wr, ) is calculated as
ordy (y) ordpiy! \
Y Waatye 1) Walat@)) A v—/ Y Witaly@ ) Waplat@') g, Hwhiylt 2dy
St -0 -0

— [ Wipa(x))]

» Sy /k” Wap(a(z))y, 1(2)}:\* 2077 = L(s, ) L(s, 0oy )
I Kp Ky

v-factor: Tt is known that there exists y-factor (s, 77, 1, ¢, 1) satisfying the functional equation for

every We W(m,, ¢, 1)

Zn(1=5,0(] W N s o, 026 W), (1.17)

w)

where ¢ means the action by the right translation. We calculate

—w

I e
DWepdiagly, v, 1,1]) = 1yl Y Wipl@' 2 "a(@" (@ ))Wap (a(@' ¢ "jw(@*?))

oll 4,
-0

11



with | — ord, (). Hence the left hand side of (2?) is calculated as

l-e

/x Nely) Z Wlp(@["3 ’”a(@’”)u'(m“))szm((ol‘° "1];‘,(“#2))“/‘1'%‘ i Z‘d/'y
YR m=0
- I e , o
= /x e (W)yp(@ Mooy E Wiy (a (@™ )r0(@5 ) Wapal@ ¢ ™yw(@2))ly|'t ' 2d7y
Ty =0
. 1 B . o
:/ Wiy (a{x)ww (@) gp ()| x|t 0 2d \/ e (@ Y Wap (a(@S)a(z)w(@2))|z|'t 7 2d" 2
" . e 1 . ' oS { N ! s
t/ Wiy (aytor)g gy () |t Zd’_\‘/ Wap (a-t0y)g “Viz]'! 2dz
-k; Tky
' s Ay [ i
= ot Wl R [t Waptas 2] A
Jkg .

which is equal to Z(1 — s, o(w1 )Wy, 175 ) Z(1 — s, 0(w )W2). Thus, noting (W, . 7 1y s ne LT:Z — (7,
Y o, 1) s aL (s o, p). (1.18)

L-factor, ¢-factor: At finite place p, the Clg%,q *| module generated by the Z{(s,W,u) for
W € W(mp, ¢, 1) is a principal fractional idcal of C(g *). The genarator of the ideal is in the
form Q(g %)~ ! with Q(X) € C|X| such that Q(0) — 1 (c.f. [?]). The L(s, mp, i) is defined by Q(g~ ) !

and the e-factor is defined by

L(s, o 1) L19)

e T iy

PROPOSITION 1.5 The irreducible 7y associated to 6{g; fi B f») has, for coery i & kg,

L{s, mp, pt) = L(s, 01 N ) LS, 00p N p), €08, TTp, 11 1) — €08, 01, N, )e(s, oop S 1, ).

PROOF. It suffices to show in the case of ¢ — 1. To begin with, we notice that, if Q(X) — [/ (1 —a;X)
represents the polynomial of L(s, 7, ), then Q(X) — [T (1 — a, 'X) does of L{s, 7Ty ). Assume that
L(s,01p)L(s,02p) is not L(s, mp). Then, we can write L(s,d,)L(s,02p) = L{(s,m)r(g ) by a certain

polynomial r(X) = [T/ (1 — B, X) € C[X], since L(s, T, ) is the generator of the principal ideal. So,

L(s, 01, )L (s, 02p)
L(1 —s,01p)L{1 = 5,02

€S, Trp, PIE(S, Top, P) = V{5, TLp, Y)Y (S, O2p, )
as well as (2?). Hence, by (2?), we have

(s, T, 1, 1) _ [T, 11 — B, g
S(Sz&lp,l/’)f(S/&Zp’l/’) I_I;”,l(l _,F’/"] *)

However, the right hand side is a monomial of g 7 since all the e-factors in the left hand side are so.

Then {5]}}'}_’1 should coincide with {g46,}!" | as a set, which is impossible. This completes the proof. [J



According to Roberts, Schmidt [?], if the central character 17, of m1 — W(m, ¢) is trivial, the e-factor is

Nals

written as €9 2 for the eigenvalue €, € { L1} of the newvector W, with respect to the Atkin-

Lehner type operator, the right translation by the clement

For F — 0{(g; fi® f»), in the case of 7,1 — ye2 — 1, we tind Wr, at every finite p is just the local
newvector by the coincidence of Nz,. Also by the Weil representation, we can see directly €7 — €162,
where ¢; € {£1} is the eigenvalue of W, for the Atkin-Lehner operator.

semi-paramodular conjecture: As a generalization and globalization of [?], we naturally guess the
followings also for the nontrivial character case by our evidence. At finite place p, for positive integer

n, put
Wymp, - 1) = {W € W(mp, 91, 1) | W(gu) — 72(d)W(g), forevery u & K, (n,c(17)) such as

g (mod p")}.

uzi

|-

Yoo¥ X

CONJECTURE 2 Suppose that an irreducible generic cuspidal representation m — SNome € TTI{GSpa(A))
is unitary, and all 7. are infinite dimensional.  Then, €(s, ) — [lpe(s, T, yn, 1) s written as
en|Dk/Q|2’4"Nk/Q(c,-r)% S for ex = e(3,7) with |ex| — 1. Here cx — [1, pNT is characterized by
the condition dim¢e Wx_(my, ¢, 1) — 1. In this case, W € Wy (7, 1, 1) satsifies Zn(s, W) — L(s, ),

up to constant multiple.
cuspidality: Put the Siegel (resp. Klingen) parabolic subgroup P (resp. Q) of Sp» as

1 S
P—NpMp—{[ * [ |

1 * a b
QNQMQH‘ ! ; HH C }Hf 5;J&SL(2),teGL(1)}.
1 t!

Define the two embeddings ep, ey of GL(2) into GSp(2) by

S='Se MM F ., ]lgeGLE},

¥

b,
Q i ’
ep(g) =17 0 b oeole) — [ c dy }
‘ det{g)
If E € A(GSp2(A)) is a non-cuspform, by the definition of cuspform, we obtain automorphic forms of
GL2(A) by the integrals

Op(E)(g:h) = E(nep(g)h)dn, or ®O(E)(g: /) — / E(neg(g)h)dn

4/;\';1) (k W Np (A H . Z\'IQ ‘\1\ Y .‘\"Qi A

for some i € GSp2(A ) where dn in each integrals are suitable Haar measures on Np(A), No(A). Let
us observe the cuspidality of F — 8{g; f1 B f2). Consider the case of oy — 2. In this case, F is non-
cuspidal since Lg‘(s, F) = Zs(s,k)Ls(s, 01 x 1) for the set S of bad places has a double poleats — 1. But



cuspforms cannot such property according to Kudla-Rallis [?]. We can also check the noncuspidality by
q)Q(F;gl ) # 0at

N
S ~
Lkp L(p

éIz'H 1

P (.

We can regard D (F;g1) as a theta lift from GO(2,2) to GL(2), that is,

8(g; 11X fo, ,—/‘ (g, U i )@ () f1 L) falhg ),
& S8 o0 = [ L /1141\‘7\_,_‘”2%('(‘* (i hah)gn)(x) frlln) falla)

R

P |) in the case of c(yp) — 0, and yp{@ by )ch(] p:”\ b 00 |} oth-

where @1 (x) = ch(| p:,ﬂ\
erwise (ch means characteristic function). It is ecasy to sce this theta lift is not trivial by noting

Jerauencraoay filln) f2()dhy # 0. This means the rotation:

GSp(2).

CO(2,21 x (M g
GON2, 20 = G2y

CL(2)® GL(2) = 6L

Next, consider the case that ¢} is corresponding to some Eisenstein series, i.e., all k1; is equal to k for
1 1
k1

somerx > land L{s,;m) = L(s — 5 x)L(s+ 1‘;2—1,,x‘ ) for some x € X{k”\A”). Then the x-twist of

spinor L-function of F is equal to

1 ¢ — 1
C(s—}\? ;k)L(s—+—h7

1 PXALs, s x)

where 7 (s; k) is the Dedekind zeta function of k. In particular, it has a simple pole at s — 5 by the final
Remark of Jacquet-Shalika [?]. Moriyama [?] showed that every spinor L-function of cuspidal generic
representation is entire, hence F is not cuspidal. However, we can also know the noncuspidality by
finding that the degenerated Whittaker function WFI’O(l ) is not zero. All the elements which may con-

tribute to the Fourier coefficient at 0 arc in the o( H(k))-orbits of 1) (v, x01 ) with x € k, i) (74, | . 11,

or iii) (o1, | ). However, one can see casily that the orbits of i) have no contribution, by noting

/Ax filae) folar)d t = /\ Y Wilaw) ) Waolay)d t =0
J 4 g v Yy
For the orbits of ii), by the similar calculation of W;\"(l ), with noting
{he HU(A) | pth)yor —o,ptyl  Jel I+ A /A —{(ny,ny) | x,x € A},
(e HYA) [ptn(en L)) = (el | D/AT = {(ne 1) [y & AY,

one can see easily that the contribution is reduced to the value of ¢, Wy, (w1), where ¢, is the constant
term of fo. However since c;, — 0, these orbits have no contribution. For the orbits of iii), by the discus-
sion symmetric to that for the orbits of i), its contribution is reduced to the value of ¢y Wy, (1), which is

not zero. Hence Wfl-’o(l) is not zero. This means ®p(F; 1) — fi(g), and the rotation below.

14



G5p(2)

GO2,25 % L,s;n/ J b
5 S

GL(2)® GL(2) : GL(2)

Remark that the correspondence GL(2) B GL(2) —— GL(2} is different from the theta correspondence
as in the previous case (s0 we denote it by the question mark ?7). Other than the above two cases, we
find 8(g; f1 X f2) is cuspidal by theorem 1.8 of [?], which characterizes cuspidality of automorphic rep-
resentation of GSp2(A) by standard L-function. The theorem is obtained by observing the L-function

of noncuspform and complementing the result of Kudla, Rallis [?]. Summing up the aboves,

THEOREM 1.6 Suppose 1,02 € TI{GLy(A)) satisfies the condition at the beginning of this section. Take the
newforms fi € oy, fo € oy as in (22) and define F — 0(g; /1 & f2) by (22). Then,

iy If one of oy and oo 1s not cuspidal, then F is not cuspidal. This lifting can be considered as an analogue of
Langlands lift along the Siegel parabolic subgroup Np.

it) If oy = oy, then F is not cuspidal. This lifting can be considered as an analogue of Langlands lift along the
Klingen parabolic subgroup Ng.

iit) Othewise F is cuspidal.

At finite place p, let ¢ be the sum of the conductors of oy, o2, and | be the conductor of iy. If  — 0, then F is ‘stable
on Ky(e) Iff > 0O, then F is He Usenii stable on Kp (e, f) in the sence of Definition ??. The Whittaker function

Wi-’ ! (1) associated to Y 1 15 not zero, and it holds

ZNn(5, Wrgy) = L5, o) — L(s, 010 ) L(5, 020 ), €(S, 7o, 1, 1) = €05, 000, ) e(s, Oan, )

at every plcae v, where Zx (s, Weo) is Hie Novodvorsky integral and 71 — .70 1s the irreducible automorplic

representation associnted to F.

2 A(GLa(La)®) — A(GSpa(A)°) for quadratic extension L/k.

Take a squarefree element a2 € o, and pute — /a. Let L — k(€) be the quadratic extension of k with
ring of integer O. Let x € X!'(k~ \k ) be the class character associated to L/k, and ¢ the generator of
Gal(L/k). Let

Vik) —{ve Ma(L) [e(r') — —xb = {1 " by e kb
with quadratic form (x,y) — —tr(xy"). In this section, we write

H(k) — k" x GLy(L), H'(k) — {(t.h) & H(k)| ¥ = Ny ji{dethy}
and define the action of H(k) (resp. H{A)) on V (k) (resp. V(A)) by
o(t,yx =t Ta(h')xh

We require for ¢ = Sqon € TT(GL2(La)) the following assumptions.

15



i) o is cuspidal.
ii) the central character 7 — 7 is written as o Ny ; by a certain ¢ X' (k“ A7 ).
iii) if the j-th archimedean place oo, of k splits into (real) 00, 005 in L, then both of ¢, 0200, are discrete

series representation with an identical lowest weight &, + 1(> 1).

iv) in the case of Lo, ~ C, 0n, has Langlands paramcter = — diag|( VZT)"?’,( v‘%)"‘j with x; &

Z-. (Hence, #es, is trivial and o, contains the 2x;-th symmetric representation of SU2(C)). And
oo (—1) — (—1)™.

REMARK 2.1 Even if peo, (—1) — (—1 b at some oo, where Lo, ~ C, we can also consider the theta lift
similar to F — 0(g; fu) bel,ow. But, we don’t know this theta lift is alz‘unys non-vanishing. By this lift, we will
obtain another F' whose central character is different from that of F. F' may be holomorphic or belong to non-
holomorphic discrete series representation at oo (see section and of [2] for the account). If F' # 0, then it holds
L(s,F)o = L(s,F')o at all finite v where F' is GSpa (0w stable and an eigenform. (Here L(s, F' ). is defined by

the Hecke operators explained in the next section at finite v.)

Automorphic form of H(A): Let iy — gy o Try ;i with ¢y fixed in the previous section. In the case of
o; 2 R x R, we choose WUNEI, Wieo 2 in the same way as previous section. In the case of Lm/ ~ C, by

Lemma 13 of Asai [?], we can choose Wi, € W(0wo,, o, ) 50 that

2K

Woeo (ayry) = (paly) expldmiRe(x))) o ¢alyd = (7 ) Ka(dmry)y® !

fory € Reg,x € Cand Weeo, (hit) — Symy, (11)Woeo, (hut) for u & SUx(C). Here K, is a certain modified

Bessel function of order a, which satisfies
o0 \ , X , .
/ exp(—at —t 'h) L;;‘/(m)r‘ B ldr— (=P e V22 PR (24 ab) (2.20)
JO

sk

fora,b € R.gy, where L/{;‘\'(_\‘) — Z{:()( h J=x)/jtis Laguerre’s polynomial (cf. p.161 of [2]). At

‘ b«

finite place P of L, we take Wy € Wy, 1) so that

W\l‘.(llll) = ppla)We (), v e Top(e + 1’5[1‘, *0‘1“)})
where ‘lSL"“ﬁ is the local different of Ly over Q. Set, for h— (L) e HUA),

fiy =Y TTWeolaih) € A(GLa(La)); fulh) — 1 Tt fih) & A(H(A)). (2.21)
as]x v
where we set W,..(a,lt) — W,..(la,|) at infinite v. Schwartz function: We define the Schwartz function
¢v € S(V2) corresponding to fu as follows.
(At oo; where Leo, ~ R x R) Define the same Schwartz function ¢, for weight x; + 1 as in the previ-
ous section. We sct (p? 50 that the symmetric matrix R; is a minimal majorant of (J; assosiated to the

quadratic form (, }, that is,

(89
12

2
(&)

)
(8]

R,Q, 1R/ = Q/r Qr - g 1 , R, - o |



(At oo; where Los, ~ C) Set a homogeneous polynomial P(x) — (Pi(x)} cica, -1 € Clx] of degree x; so
that

for indeterminants u, v. It holds

P(xu) — P{x)syni,, (1 Y, 1 e SU»(C).

We define

Poo, (X1, X2) — Pls1x) +s2x2)e(— Z(,\'i“ — €7, +xi3; +x,‘2“,4;)),
i—1

where s? < 01is the j-th conjugate of €2 & k.

(Atp =2 c(pp) = 0 case ): Different from the previous section, characteristic functions of lattices do

not provide images of theta lift which are stable on paramodular groups. For example, chi(V, " M3 (0,))?

will provide F € A(GS5p2(A)) such as

F(gu) = xpldet{a, ) F(g), u & Top")

with the p adic order n of norm of the dual lattice of V, ™ My(o,). So, we define ¢, in the following

way. Define for non negative integer 1,

b 85 DU . .
U, —op x{u—1[" J]c| ‘)},,Jf‘l 11;; | [ det(u) € Di‘}PHl(kp).

For the simplicity, we assume the local different p“' of the ky, over Q,, is 0,. To begin with, we set, for
ye W

O S
L [43 Op j

Wy — 4 @bl ity el ol e,
0, otherwise.
Let rz) be the Weil representation restricted to SLy(ky). If x & 0, t & 05 .y € p, then clearly itholds
retn )@l = r(t PNl Uiy - ol (2.22)
PROPOSITION 2.2 Take the sum
Poly) = oply) + Y rylmw)eply). (2.23)
1Co/p
Then q)}, is not identically zero. For 1 & SLy(oy) and (1,v) € Wy, it holds r;(u)q)é — p(l,p)q); — (p!l"

PROOF. To begin with, we notice

.':3 b Ny (e : ,|‘l‘lm1°u( N
) ’l(*mm)sﬂg(}/f{ 92Oy IXp(=Cuh Ty EL G g 7 fanddetly) € o,

iCo/p 0, otherwise.

Here ¢ is the Weil constant, and G(x;,{p) is the Gaufs sum associated to xp, ¢p. Hence q); (n) =
(pg(nl) # 0, the first assertion follows. Since (??) is an average sum, it is easy to see r}j(u)q)}, = (p}j.
We see by direect calculation that o(1,n.)¢) — ¢} forz € $ "and p(1,'n.)p} — ¢} for z € L. This
completes the proof. ]
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Then, for the conductor ¢ — clogy) of T, We define
Ppl{x1,x2) — (/),la(e2 ‘alef)xiale O )(pi,(xzy

If 5 > 0, start with

SIS ) 3 H - ‘\j“ « ! ‘\0\

T e A
q, otherwise.

Then the same properties holds.

(Atp — P2 § > 0 case ): With the same ¢} as above, we define, for jo = ju,

1

Ph(y) = (@ Y2 @Y (v); @p(xi,x2) — @hle? “alxia, CJeh(x2).

This definition is corresponding to the choice of f € «in (22). For (t,u) € U — oy x To{*P*) such as
u = a; (mod PB') ?needed?,

Pp(plt 1)1, x2)) = ji, L (B@p(x1, x2), @p(p(t, 1 )Xy, x2)) = pp(H)@p(xy, X2 ). (2.24)
(Atp — Pinertin L, | — 0 case ): Set gl (x) — chiv, a0, (al@xa(@ ))& S(Vp). Define

Ppl(x1,X2) — q)g(w ‘a(@")xya(@ c))(/)g(»\‘z)

with e = c(op).
(Atp =P, f>0case ): Let u® =y - ch(oy ). We define

P ly) = 1R )R s @plxix2) = gl falxia gylxn).
For (t,u) € Uy — oy x To(F)suchasu = a; {mod '),
Pplp(t, u)(xy,x2)) — i, B @p(x1,xa), @plp(t, 1) (X1, X2)) — pp(t)@plx1, x2), (2.25)

(At p decomposed into pips in L): Identifying oy, |, 7y, with the pair o1y, 03y as in the previous section, we
use the same ¢,.
theta lift: Let GSpy (k)N denote the clements in GSpa{k) such that v(g) € Ny, (L”). Using the

extended Weil representation, we define, for ¢ € GSpa(A) N
0lg: fu) — | Y (g e ) (il el (2.26)
JaxHUER A T

where i = (1, 1)) € H(A) is chosen so that v(g) — Ny i det(/) ! and weembed A7 3t — (£2,1) &
HY(A). We consider that fu is a column vector and ¢ is a row vector. Since 0(g; f,.) is left GSpa (k)™
invariant, we can extend 8(g; f,) to a function on GSpy (k)\GSpa(/A) by insisting that it is left GSps (k)

N

invariant and zero outside of GSpy (kK)GSpa(A)™. We denote by 0(g; i) this extended automorphic

form on GSpy(A). In the similar way to Proposition 22, or 22, the following propositions can be shown.

PROPOSITION 2.3 The highest weight of the representation of U>(C) associated to 8(g; fy ) at oo, is

(kj+1,1), ifLeo, ~ Cand pio,(=1) — (=15,
(x; +1,0), otherwise.
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PROPOSITION 2.4 Let ey — clogp ). Iy — c(pp). (g, fu) is Lsemistable on

p
Koo +2,0p),  ifp — 2

Kp(ep, fp ), ifp — Pisinnert in L/k,
Kplegp, teq.. fp),  if p— B 1P decomposed in L/ k.

However, remark that in the proposition 2?2, the irreducible represention associated to F is

non-holomorphic discrete series representatoin,  if Lo, ~ C and jleo,(—1) — (=1)%" Y
P;-induced principal series representation, otherwise.

Whitakker function: Let us observe the Whittaker function Wg — W}' Lof F = 8(g; fu) associated to
i1, 1. By the same discussion as the previous section, all the elements in V(k)* which may contribute

to W are in the H' (k)-orbit of (v 1,a ). In this section, we write
Ziky —{txhe H' (k)| plt,hv | —v ,p(t,h)a  —a ko |} — {(ad*, | " f; )| deak”},
Zolk) = {txhe Z(k) | p(t,h)a 1 —a 1} — {{ad", | * f; |} | d € ak”,b e aek}.

Remark that (1,n¢y) € Z(k) fory € k. Forevery t € ka, s(t) — (1,n/2) in Zo{A)\Z(A) uniquely
satisfies p(s(t))a.; = a 1 +tv ;. We can also decompose Wi(1) — [, I, with

L = / r(l, (L h)) (o ,a 1);1({)W;(/z)dlv1.
7tk Ak :

Here dlh is the Haar measure on H' {ku) so that vol(U.) — 1 for the maximal compact subgroup U,.. We
are going to calculate I only for v which ramifies in L or innert.
(loo; at 00 where Loy, ~ C): Noting that all the components of P(s1z 1) — (Pi(s17 4 Ji<icox, 1 are zero

exeept for i — x; + 1, we calculate the cocefficient of 81 of I, as

exp{—2n(l —a’%))/ (/ Ko(47ty) exp(—my *) exp(47ix — 2mx’y 2)dx>d’/y
JR

JR .y

exp(—2m(1 — {%)) /

—

ye yKotdmy)exp(—m(y * —2my?))d" y,
V£ [

“(
which is founded to be nonzero since the function integrated is positive for y > 0by (27) with § = 0.

(calculation at p — P?): For the simplicity we assume the discriminant & of k over Q is 0. Let ¢ —=
ordy (¢{0)). Similar to the previous section, we can find at once that every (¢, /1) € H(kp) which may

contribute to I, is contained in the following double coscts:

D) Zolkp) (@™, n(x)a(@")'n(1})U, with v & kp and m > O with | € O/3¢,
ii) if ¢ is even, Zy(kp ){@™ 2 n(xja(@")w(e’) ) U, with x € ky,and m > 0,
if eis odd, Zo{kp )(@™" Ea n(xja("e)w(e))U, with x & k, and m > 0.
In the case of even ¢, for the i)-type, we suppose that

I @ ™ 20 ™y 20 My

d 1 : o
ot va ) = (0 Tape e bl e e 1 20 ey 1) € suppey)
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where a is the nontrivial Galois conjugate map of L/k. For this, m — 0, v € oy and [ € P*(i.e, [ — 0) are
needed. Among i)-type, the practical contribution is x(=2)G{x, ¢ )W¢{1) by (1,1} with x & ap .
For the ii)-type, suppose that

plh)(v 1,0 1) — (] u,l-o m 8 L, \ "y 01 [) € supplop),

!

which is impossible. Summing up, the contribution to I, is x(=2)G(x, ¢ )W;(1) # 0. The calculations
for the odd ¢ case and that for inert p are similar to this case, so, we omit them

Novodvorsky zeta integral:

Z(s, W, ) / Widiag|y,y, LD |y]™ 2ply)d” y.
This zeta integral is calculated by the same way at the calculation of Wr (1) by replacing ¢y (x1, x2) to
@p{yx1,yx2), and supposing that det(t Yig) —y 'forh — (t,hg) € H(A). Atp — P?, we calculate
Wy (diagly, v, 1,1]) — x(=2)COx ¢y Wys(a_y i Hy)

where /¥ is an element of Li, such that N; . (/y) = —y. Remark that Wy (a(\/y)) = Wglal—/y))
since yp(—1) = prp o Ny /i{—=1) = 1. Hence (x(=2)G{x, ")) lZ(S,WFP) is calculated as

1

Toxd7z = L(s,0q).

| Il

/kx Wy (al /T Lyl 2d7y — /, Wys(azly H(z)
T hp MDY

At innert p — 0, if there are z € L‘J/A suchasy — Ny (z),
Wep(diag[y, v, 1,1]) — [y|[Wesaz )i H(y)

and zero otherwise. Hence Z(s, Wr, ) is calculated as
’ Y ’ [ o~ .
/ L Walaz)p Hydlyl” 27y — / Wysa=)y H(z)lz]" 2d72 = Lis, Gy ).

NeLY T

y-factor:

Zn(l =5, 7], CCOW,ompn Y = s, g, 1) Zn(s, W, ) (2.27)

i
holds for every W € W(r, ¢, 1 ). Atp — P2, we calculate

—w

(] VD Wepldiagly, v, 1L 1)) = x(=2)C U ¢olylpe Ty Wa(a ywy)-

1

Hence the left hand side of (2?) is calculated as

x(=2)G{x, ¢) /k e (W () Wapla o)yl Y 2d Y = x(-2)Gix ) /k,W‘B(”\/ywl)ll/\“ Sy
v Ky hp

u-—

“ X206 ) [ o Waas |zl T (<2160 020 s e )W)
Tiap

At innert p = L, if there are z & Ll“ such asy — Ny i(z),

m(} )W (diagly, v, 1,1)) — lylpe Hy)Wa(azaey)

w)
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and zero otherwise. Hence the left hand side of (2?) is calculated as

. - S 3 . ’ S ! s
/. Hp (Y1, 1(}/)1/\’\13(173201)]}/‘[ t 2dy — / W\p(n:un)[zw Co2d7z
. z\"l,kL\; - Il‘

' N R .
- /IX () Wy(az )|z 9 2d7z = Z(1 — 5, (w LWy ).
JIg

Thus, with noting Wy € G — c, s TP, 1) — (s, 0y ) atevery finite P
L-factor, e-factor: By the above results, we can also conclude L(s, 7y, &) — L(s, &, Eo Ny i), €(5, 1,8, 41, 1) —
£(s, 09,8 o Ny i) forevery & € l?p, by the same way as in the previous section.
cuspidality: In case that ¢ is obtained by the base change lift from oy € TT(GLa(ka)) and jt — x4, F
is non-cuspidal since L;’(s, F) has a double pole at s — 1. Indeed, the image Do (F; g1) by the Siegel
operator g, defined section ?? at some ¢ € Spz2(/\) is not zero. Indeed, we can regard ®o(F;¢1) as a
theta lift from GO(2,2) to GL(2) similar to the ¢; — 3 case in the previous section. This phenomnenon
implies that

/ 7 i Ydet(h))fo(d” h # 0.

JGLatk\Glalkp
Thus f,, can be regarded as a member of an ““distingwised’ representation in an extended sence (c.f. Flicker
[?]). Moreover this result will give an answer for the problem when 7 & TIGLy(La) is distingwished,
that is, if and only if 7T is obtained by the base change lift, 7 is distngwished {or in the extended sence).
In a nearly future, we will return to this topic.

However, different from the ¢; — ¢ case in the previous section, this is a defective rotation:
_r GSpalkal.

02,21 < GSpl2i o~ g

el NN

/ (2 2y w (3fi2, A
GLa(Lp) = (L2 r Gl GLa(kp)

(base change)

In general, when one makes a round from GLy(kp ), the result may not be an eigenform at p where

p = ‘B is innert in L/ k (see the next section for the explanation).
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