Thus I'(a) <0, i.e.
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gives the desired inequality. (]

A variant of the last lemma may be applied to the kissing number problem
on replacing the exponential function in the definition of the theta series by
a suitable Bessel function. More precisely, one has
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with a suitable constant C'. Here the Mellin transform of the left hand side
is of the form
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Applying the last lemma (which, however cannot be applied literally, since
f(t) is not always nonnegative) gives than

Theorem.
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Co-volumes

The following theorem is known: 2ol cann Loe ey
Theorem. (Kajdan-Margoulis) Let G be a locally compact group without
compact factors, and let u be a Haar measure on G. Then there is a constant
¢, such that

WG/T) = ¢,
for all discrete subgroups T’ of G.



