genus two and of an elliptic curve, which is, for instance, written in terms of ξ_1, \dots, ξ_8 , as

$$(\xi_1, \dots, \xi_5, t+\xi_6, t+\xi_7, t+\xi_6), \qquad t \longrightarrow \infty.$$

Let $S(2, 8)_0$ be the subring of S(2, 8) which is generated by homogeneous elements $I(\xi_1, \dots, \xi_8)$ of degree $s, s \ge 0$ such that

$$\lim_{t\to\infty} t^{-78/3} I(\xi_1, \dots, \xi_5, t+\xi_6, t+\xi_7, t+\xi_8)$$

makes sense. Then the image of $A'(\Gamma_3)$ by ρ_3 is contained in $S(2, 8)_0$. We obtain a homomorphism of graded rings

$$\Psi: S(2, 8)_0 \longrightarrow S(6) \otimes S(2, 4)$$

by using the above limit. There is a commutative diagram

The Ψ of right hand side is a map given by polynomial calculation, and is, although sometimes not very easy, surely computable. Thus since $\rho_2 \otimes \rho_1$ is injective, the Ψ of left hand side is computable (at least in principle).

Let A(i) be the ideal of $A(\Gamma_s)/(\chi_{1s})$ generated by the modular forms f with $\nu(f) \geq i$, and let $\overline{A}(i) = A(i)/A(i+1)$. Here we note that A(i) is defined differently from [56] (the present A(i) equals $A(i)/(\chi_{1s})$ in [56]), but $\overline{A}(i)$'s are the same except for what we mentioned in the above remark. $\overline{A}(i)$'s are $\overline{A}(0)$ -modules. We fix three modular forms β , γ , δ with $\nu(\beta) = 1$, $\nu(\gamma) = 2$, $\nu(\delta) = 3$ respectively. If $f \in A(\Gamma_s)$ is of order $i \equiv 0 \pmod{4}$ (resp. 1, 2, 3 (mod 4)), then $f/\chi_{2s}^{4/4}$ (resp. $f\delta/\chi_{2s}^{4(i+3)/4}$, $f\gamma/\chi_{2s}^{4(i+2)/4}$, $f\beta/\chi_{2s}^{4(i+3)/4}$) is contained in $A'(\Gamma_s)$ and hence the Ψ -image is defined. For $i \equiv 0 \pmod{4}$ (resp. 1, 2, 3 (mod 4)) we denote by $\Psi(i)$ the map given by

$$f \longrightarrow \Psi(f/\chi_{28}^{\epsilon/4})$$
 (resp. $\Psi(f\delta/\chi_{28}^{(i+3)/4}), \Psi(f\gamma/\chi_{28}^{(i+2)/4}), \Psi(f\beta/\chi_{28}^{(i+1)/4})),$

where in [56], some specific modular forms are taken as β , γ , δ . $\Psi(i)$ induces an injective homomorphism

$$\overline{A}(i) \longrightarrow \overline{A}',$$

which we denote also by $\Psi(i)$. As mentioned above, this map is com-

putable. Let us identify $\overline{A}(i)$ with its $\Psi(i)$ -image. Then it is shown that

$$\overline{A}(i) = \overline{A}(i+4)$$
 for $i \ge 3$,

and so that

$$A(\Gamma_3)/(\chi_{18}) \simeq \overline{A}(0) \oplus \overline{A}(1) \oplus \overline{A}(2) \oplus \bigoplus_{u=0}^{\infty} (\overline{A}(3) \oplus \overline{A}(4) \oplus \overline{A}(5) \oplus \overline{A}(6)) \chi_{18}^{\nu}$$

as modules over a graded subring of A(0) isomorphic to a polynomial ring. The structure of A(i), $i \le 6$, could be determined, and hence some of the structure of $A(\Gamma_3)$ too. We refer the reader to [56, pp. 831-2] for the theorem about the structure of $A(\Gamma_3)$. Here we note that the problems about a minimal system of generators, relations among them, are untouched yet as well as the rationality problem of the variety H_3/Γ_3 which seems one of the outstanding problems.

We shall close this section with Taniyama's words ([50, Letter to M. Sugiura]), which appears in context, to talk about the theory of complex multiplication. Perhaps the author takes them in a wider sense than Taniyama's original view, which, however, seems still true: When Siegel modular functions can be handled as "easily" as elliptic functions, number theory will have developed in many directions.

§ 6. Siegel modular forms of degree four

Let C be a non-hyperelliptic curve of genus four. We identify C with its canonical curve in P^3 . Then C is a complete intersection of a quadric and a cubic. There are two types of quadrics in P^3 , namely, smooth quadrics and quadric cones. A curve C exhibited as a complete intersection of a quadric cone and a cubic is said to have a vanishing theta constant because one of the theta constants with even characteristics vanishes at the jacobian point corresponding to C if and only if C is such a curve. Let \mathfrak{M}'_4 be the moduli of such curves.

Let R denote the irreducible subvariety of the reducible locus of \mathscr{A}_4 corresponding to the direct products of 3-dimensional abelian varieties and elliptic curves, and let \mathfrak{M}_4 , \mathfrak{M}'_4 be the closures in \mathscr{A}_4 of \mathfrak{M}_4 , \mathfrak{M}'_4 . There is a sequence of inclusions:

$$R \subset \mathfrak{M}'_{4} \subset \mathfrak{M}_{4} \subset \mathscr{A}_{4}$$
.

 \mathfrak{M}_4 is an irreducible divisor of \mathcal{A}_4 , and is in the case D(1), indeed it is defined by the single modular form J_8 of weight eight which is called *the Schottky invariant*. It is Schottky's theorem, however whose rigorous proof has been first given by Igusa [31]. Let χ_{68} be the modular form for Γ_4 defined to be the product of all theta constants with even characteristics