Modular Forms

 $\overline{\mathcal{R}}_{\bullet} = \operatorname{div}(\chi_{18}).$

We have an exact sequence

$$0 \longrightarrow (\chi_{18}) \longrightarrow A(\Gamma_3) \xrightarrow{\rho_3} S(2, 8)$$

where for the structure of S(2, 8), we refer the reader to Shioda [46].

Let R denote the reducible locus of \mathcal{A}_3 . Then we have a sequence of inclusions

$$R \subset \overline{\mathcal{H}}_3 \subset \mathcal{A}_3$$

where \mathcal{H}_3 (resp. R) is irreducible of codimension one in \mathcal{A}_3 (resp. \mathcal{H}_3). The sequence satisfies the conditions which are mentioned at the end of § 2. R corresponds to the subset

$$R_0 := \left\{ \begin{bmatrix} Z_1 & 0 \\ 0 & z_3 \end{bmatrix} \in H_3 \mid Z_1 \in H_2, \ z_3 \in H \right\}$$

of H_3 . The stabilizer subgroup of Γ_3 at R_0 is the image of

The subset of R_0 consisting of diagonal matrices, is stable under the matrix $\begin{pmatrix} U & 0 \\ 0 & II \end{pmatrix} \in \Gamma_3$ with

$$U = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

The graded ring associated with R, which we denote by $\overline{A}(0)$, is given by

$$\left\{\sum \psi \otimes j \in A(\Gamma_2) \otimes A(\Gamma_1) \mid \sum \psi \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} j(z_3) \text{ is symmetric in } z_1, z_2, z_3 \right\}$$

where for two graded modules $M = \bigoplus_k M_k$, $N = \bigoplus_k N_k$, $M \otimes N$ always denotes a graded module $\bigoplus_k M_k \otimes N_k$. $\overline{A}(0)$ is easily understood because the structures of $A(\Gamma_1)$, $A(\Gamma_2)$ are known. So if the trick mentioned in § 2 is applicable to $R \subset \mathcal{R}_3$ and to $\mathcal{R}_3 \subset \mathcal{A}_3$, then we get some information about the structure of $A(\Gamma_3)$. It has been done in [56], whose sketch is given in the following (see also [57]).

 $\overline{\mathcal{H}}_3 \subset \mathcal{A}_3$ is in the case D(1), indeed $\overline{\mathcal{H}}_3$ is defined by χ_{18} as stated above. So the problem is reduced to determine the graded ring $A(\Gamma_3)/(\chi_{18})$, whose projective spectrum equals $\overline{\mathcal{H}}_3$. Let us denote by $\nu(f)$, $f \in A(\Gamma_3)$, the vanishing order of $f|_{\overline{\mathcal{H}}_3}$ at R. There is a cusp form χ_{28} of weight 28 whose restriction to $\overline{\mathcal{H}}_3$ vanishes only at R, where for the definition of χ_{28} we refer the reader to [56]. χ_{28} is the modular form of lowest weight satisfying such a property, and $\nu(\chi_{28})=4$. Hence $R \subset \overline{\mathcal{H}}_3$ is in the case D(4).

Remark. In [56], we have defined the order of vanishing to be twice as much as in the present paper in order to unify notations. So the vanishing order $\nu(\chi_{28})$ has been written as 8 there.

 $\overline{\mathscr{R}}_3 \subset \mathscr{A}_3$ is corresponding to the union of loci in H_3 of theta constants $\theta \begin{bmatrix} u \\ v \end{bmatrix}, \begin{pmatrix} u \\ v \end{pmatrix}$ being even. There are just six theta constants which vanish identically on $R_0 \subset H_3$, e.g., $\theta \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}(Z)$. Let V be the irreducible component of the analytic subvariety in H_3 defined by $\theta \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}(Z) = 0$ which contains R_0 . Let f be a modular form for Γ_3 . Suppose that $\nu(f) \equiv 0 \pmod{4}$. Then $(f) \chi_{2\delta}^{(F)/4})|_{V-\Gamma_3 R_0}$ is holomorphic since $\chi_{2\delta}$ vanishes nowhere on $V-\Gamma_3 R_0$, and it extends holomorphically to V by Riemann's removable singularity theorem. Thus

$$\Psi(f/\chi_{28}^{\nu(f)/4})(Z_1, z_3) = \lim_{\substack{Z \to Z_0 \\ Z \in V}} (f/\chi_{28}^{\nu(f)/4})(Z), \qquad Z_0 = \begin{bmatrix} Z_1 & 0 \\ 0 & z_3 \end{bmatrix} \in R_0,$$

is well defined. Let Γ_2' be the subgroup in Γ_2 of index six which leaves a theta characteristic $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ stable mod 2. Then $\Psi(f|\mathcal{X}_{28}^{\nu(f)/4})$ is shown to be contained in $\overline{A}' := \left\{ \sum \psi \otimes j \in A(\Gamma_2') \otimes A(\Gamma_1) \mid \sum \psi \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} j(z_3) \right\}$ is symmetric in z_1, z_3 . The homomorphism Ψ and the graded ring \overline{A}' can be constructed as the one which we introduced in § 2 where $X = \overline{\mathcal{R}}_3$, and D = R.

Let F be a meromorphic modular form for Γ_3 whose restriction to V is, however, holomorphic such as $f/\chi_3^{ef/I/4}$ above. It is not easy to calculate $\Psi(F)$ directly from definition, particularly if F is not holomorphic globally on H_3 . $\rho_3(F)$ is obviously well-defined and is contained in $S(2, 8) \subset C[\xi_1, \dots, \xi_6]$. Let $A'(\Gamma_3)$ be the graded ring of such modular forms. A hyperelliptic point Z in V moves toward $Z_0 \in R_0$ if the corresponding curve degenerates to the union of a hyperelliptic curve of