Modular Forms

 $\Theta(Z)$ is a Siegel modular form for Γ_2 of weight ten, and

$$D = \operatorname{div}(\Theta)$$
.

The key to prove this is to show that $Z \in H_2$ is reducible if and only if one theta constant $\theta \begin{bmatrix} u \\ v \end{bmatrix}$ vanishes at Z. Hammond [15] has proved this by using moduli theory, that is, if $\theta \begin{bmatrix} u \\ v \end{bmatrix}(Z) = 0$, then the principally polarized abelian variety corresponding to $Z \in H_2$ is decomposable. Freitag [6, 10] has done in a way similar to what Gundlach [13] did, namely by

the function-theoretic argument of theta constants. D is in the case D(1), and hence $A(\Gamma_2)^{(2)}$ equals $C[E_4, E_6, E_{12}, \Theta]$ by the argument of § 2. Θ is equal to $E_4E_6-E_{10}$ up to a constant factor. So we have the following:

Theorem (Igusa). $A(\Gamma_2)^{(2)} = C[E_4, E_6, E_{10}, E_{12}]$, and E_4, \dots, E_{12} are algebraically independent. The generating function is given by $1/(1-t^4)$ $(1-t^6)(1-t^{10})(1-t^{12})$.

By this, the Siegel modular function field of degree two is shown to be rational. $A(\Gamma_2)$ is generated by $A(\Gamma_2)^{(2)}$ and a cusp form χ_{15} of weight 35. For this fact and for the definition of χ_{15} we refer the reader to Igusa [30].

Remark. So far, a graded ring of modular forms is written as a finite free module over its graded subring isomorphic to a polynomial ring. Such a ring is called Cohen-Macaulay. In the case of real quadratic field K, $A(\Gamma_K)^{(r)}$ is shown to be Cohen-Macaulay for any integer r > 1 ([53]), and moreover it is very likely that $A(\Gamma_K)$ itself is Cohen-Macaulay, which is not generally proved yet. However, unfortunately this nice property does not hold for a general graded ring of modular forms. For instance, neither the graded ring of Hilbert modular forms for K of degree ≥ 3 nor the ring $A(\Gamma_R)$ of Siegel modular forms of degree $n \geq 3$ is Cohen-Macaulay ([53, 54, 58]).

§ 5. Siegel modular forms of degree three

Let \mathfrak{M}_s be the moduli space of smooth curves of genus g. The Torelli map

$$\mathfrak{M}_g {\longrightarrow} \mathscr{A}_g$$

gives an embedding, and we identify $\mathfrak{M}_{\mathfrak{g}}$ with its image. $\mathfrak{M}_{\mathfrak{g}}$ is open in

 \mathscr{A}_g if $g \le 3$, and is of codimension one if g = 4. Let \mathscr{H}_g be the locus in \mathfrak{M}_g consisting of hyperelliptic points, and let $\overline{\mathscr{H}}_g$ be its closure in \mathscr{A}_g .

A hyperelliptic curve of genus g is given, as an affine curve, by an equation

$$y^2 = \prod_{i=1}^{2g+2} (x - \xi_i)$$

where ξ_1, \dots, ξ_{2g+2} are mutually distinct complex numbers. Let W_{2g+2} be an open subvariety of C^{2g+2} consisting of points with distinct coordinates, which parametrizes "all" hyperelliptic curves of genus g. There is a surjective morphism of W_{2g+2} onto \mathscr{H}_g by sending $(\xi_1, \dots, \xi_{2g+2})$ to the isomorphism class of the corresponding hyperelliptic curve. \mathscr{H}_g is a quotient of W_{2g+2} by the composite of $SL_2(C)$ and of the symmetric group \mathfrak{G}_{2g+2} of degree 2g+2. Let S(2, 2g+2) be the graded ring of invariants of a binary (2g+2)-form, which comes out as the invariant subring of $C[\xi_1, \dots, \xi_{2g+2}]$ under the above-mentioned group where we refer the reader to Schur [42], Tsuyumine [56, Chap. I, II] for detail. $\mathscr{H}_g \to \operatorname{Proj}(S(2, 2g+2))$ is a compactification of \mathscr{H}_g . Let S(2g+2) denote the invariant subring of $C[\xi_1, \dots, \xi_{2g+2}]$ under $SL_2(C)$, so that the invariant subring of S(2g+2) under $SL_2(2g+2)$. If $SL_2(2g+2)$ denotes the principal congruence subgroup of level two, then Igusa [30] has obtained the homomorphism

$$\rho_g: A(\Gamma_g(2)) \longrightarrow S(2g+2)$$

of graded rings which is described explicitly in terms of theta constants. ρ_g maps the graded part of degree k to that of degree gk/2. He showed also that the restriction of ρ_g to $A(\Gamma_g)$, which we denote also by ρ_g , is a homomorphism of $A(\Gamma_g)$ to S(2, 2g+2);

$$\rho_g: A(\Gamma_g) \longrightarrow S(2, 2g+2)$$

which is associated with an embedding $\mathscr{H}_g \longrightarrow \mathscr{A}_g$. The kernel of ρ_g is the ideal generated by modular forms vanishing identically on $\mathscr{H}_g \subset \mathscr{A}_g$. ρ_g is injective if $g \leq 2$ because all curves of genus $g \leq 2$ are hyperelliptic.

Now let us consider the case g=3. There are 36 even theta characteristics of degree three. The corresponding product of theta constants

$$\chi_{18} := \prod_{\text{even}} \theta \begin{bmatrix} u \\ v \end{bmatrix}$$

is a cusp form for Γ_3 of weight 18. It was shown by Igusa [30] that