case D(8). It gives one good example which shows how we should treat the case D(r), $r \ge 2$.

§ 4. Siegel modular forms of degree two

Let H_n be the Siegel space of degree n; $\{Z \in M_n(C)|^t Z = Z, \text{Im } Z > 0\}$. Let Γ_n be the modular group $\{M \in M_{2n}(Z)|^t MJM = J\}$ where J denotes $\begin{bmatrix} 0 & 1_n \\ -1_n & 0 \end{bmatrix}$, 1_n being the identity matrix of size n. Γ_n acts on H_n by the usual modular transformation;

$$Z \longrightarrow MZ = (AZ + B)(CZ + D)^{-1}, \qquad M = \begin{pmatrix} AB \\ CD \end{pmatrix} \in \Gamma_n.$$

The jacobian j(M, Z) at Z, of the automorphism of H_n induced by M, is $|CZ+D|^{-n-1}$. Let $\mathscr{A}_n:=H_n/\Gamma_n$, and let \mathscr{A}_n^* be the Satake compactification which is normal and projective. \mathscr{A}_n is the moduli space of principally polarized abelian varieties over C of dimension n. codim $(\mathscr{A}_n^*-\mathscr{A}_n)$ equals n, and hence the variety \mathscr{A}_n satisfies the first condition in the Assumption I if n>1. Let Γ be a congruence subgroup of Γ_n . A holomorphic function f on H_n is called a Siegel modular form for Γ of weight k if it satisfies

$$f(MZ) = |CZ + D|^k f(Z)$$
 for $M = \begin{pmatrix} AB \\ CD \end{pmatrix} \in \Gamma$

where for n=1 we need the additional condition that f is holomorphic also at the cusps, which is automatic in the case n>1. We denote by $A(\Gamma)$ the graded ring of Siegel modular froms for Γ . \mathcal{A}_n^* equals $\operatorname{Proj}(A(\Gamma_n))$. We denote by $E_k(Z)$ the Eisenstein series of even weight k, which is an example of Siegel modular forms. We define a theta constant by setting

$$\theta\begin{bmatrix} u \\ v \end{bmatrix}(Z) = \sum_{g \in \mathbb{Z}^n} e\left(\frac{1}{2}\left(g + \frac{u}{2}\right)Z^t\left(g + \frac{u}{2}\right) + \frac{1}{2}\left(g + \frac{u}{2}\right)^t v\right)$$

 of all points corresponding to reducible points, which is closed in \mathcal{A}_n .

Now let us assume n=2. We introduce Freitag [6] (cf. [10]) and Hammond [15] from our point of view, in which Igusa's structure theorem for $A(\Gamma_2)^{(2)}$ was reproved. We take as D the reducible locus of \mathcal{A}_2 , or equivalently, the divisor corresponding to the image of the embedding;

$$H^{2} \longrightarrow H_{2}.$$

$$(z_{1}, z_{2}) \longrightarrow \begin{bmatrix} z_{1} & 0 \\ 0 & z_{2} \end{bmatrix}$$

The stabilizer subgroup of Γ_2 at the image, is generated by the image of $\Gamma_1^{\times 2}$ by

$$\begin{array}{cccc}
\Gamma_1^{\times 2} & \longrightarrow & \Gamma_2 \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \end{pmatrix} \longrightarrow \begin{pmatrix} a & 0 & b & 0 \\ 0 & a' & 0 & b' \\ c & 0 & d & 0 \\ 0 & c' & 0 & d' \end{pmatrix}$$

and by a matrix

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

The latter matrix induces the transposition σ of z_1 and z_2 . So D is isomorphic to $(H_1/\Gamma_1)^{\times 2}/\langle \sigma \rangle$. Since $(H/\Gamma_1)^* \simeq \operatorname{Proj}(C[g_4, g_6])$, D is associated with a graded ring $B := C[g_4 \otimes g_4, g_6 \otimes g_6, g_4^3 \otimes g_6^2, g_6^2 \otimes g_4^3]^{\langle \sigma \rangle}$ where σ changes the first and second components of a tensor. It is easy to see that

$$B = C[g_4 \otimes g_4, g_6 \otimes g_6, g_4^3 \otimes g_6^2 + g_6^2 \otimes g_4^3].$$

Let

$$\Psi \colon A(\Gamma_2)^{(2)} \longrightarrow B$$

$$f \longrightarrow f|_{H^2}$$

It is shown that $\Psi(E_4)$, $\Psi(E_6)$, $\Psi(E_{12})$ are algebraically independent. Thus Ψ is surjective. There are ten even theta characteristics of degree two. Let Θ be the square of the corresponding product of theta constants;

$$\Theta(Z) := \prod_{v \in \mathcal{V}} \theta \begin{bmatrix} u \\ v \end{bmatrix} (Z)^2.$$