Then the stabilizer subgroup of Γ_{K} at H is equal to $\Gamma_{1} \subset \Gamma_{K}$. Hence we have an embedding $H/\Gamma_{1} \rightarrow X_{K}$. If f(z) is a Hilbert modular form of weight k, then $f(\underline{r}, \dots, \tau)$ is an elliptic modular form of weight nk.

Let $K=Q(\sqrt{5})$. We introduce Gundlach [13] from our point of view. Let D be the modular curve in X_K given as above. We have a homomorphism

$$\Psi \colon A(\Gamma_R) \longrightarrow A(\Gamma_1).$$

$$f \longrightarrow f|_H$$

Let us denote by $G_2(z)$, $G_0(z)$ the Eisenstein series for Γ_K of weight 2, 6 respectively. Then it can be shown that $\Psi(G_2(z))$ and $\Psi(G_0(z))$ are algebraically independent. Hence $\Psi|_{A(\Gamma_k)^{(1)}}$ gives rise to a surjective map of $A(\Gamma_K)^{(2)}$ onto $A(\Gamma_1)^{(4)}$. Let f(z) be of odd weight. Then the weight of $\Psi(f)$ is $\not\equiv 0 \pmod 4$, and so it is a multiple of g_0 . If f is a unit with negative norm, then we have f(ez) = -f(z). The usual Fourier expansion argument shows that $\Psi(f)$ vanishes at the cusp of order at least two, and hence $\Psi(f)$ is divisible by Δ^2 . So $\Psi(f)$ is a multiple of $g_0\Delta^2$ if f is of odd weight. Gundlach [13, p. 246] found out a Hilbert modular form of weight 15, which we denote by h(z), such that $\Psi(h)$ equals $g_0\Delta^2$ up to a constant factor. Now the image of $A(\Gamma_K)\Psi$ by is determined as

$$\Psi(A(\Gamma_{\kappa})) = A(\Gamma_1)^{(4)} [g_{\mathfrak{g}} \Delta^2].$$

We define a theta constant with characteristic $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \alpha$, $\beta \in O_K$, by setting

$$\theta \begin{bmatrix} \alpha \\ \beta \end{bmatrix} (z) = \sum_{\nu} e \left(tr \left(\left(\frac{1}{2\sqrt{5}} \left(\nu + \frac{\alpha}{2} \right)^2 z + \frac{1}{2\sqrt{5}} \left(\nu + \frac{\alpha}{2} \right) \beta \right) \right) \right)$$

where $e(\):=\exp\left(2\pi\sqrt{-1}(\)\right)$ and where ν runs over $O_{\mathbb{R}}$, and $\operatorname{tr}(\nu z):=\nu^{(1)}z_1+\cdots+\nu^{(n)}z_n$. A theta characteristic $\binom{\alpha}{\beta}$ is said to be *even* or *odd* according as $e(\operatorname{tr}(\alpha\beta)/4)=1$ or -1, and $\theta \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ is not identically zero if and only if $\binom{\alpha}{\beta}$ is even. There are ten even theta characteristics mod 2, and the corresponding product

$$\Theta_0(z) := \prod_{\text{even}} \theta \begin{bmatrix} \alpha \\ \beta \end{bmatrix} (z)$$

is a moldular form of weight 5. With the aid of Götsky's observation, Gundlach obtained after some calculation, that

$$\operatorname{div}(\Theta_0) = D,$$

which is obtained also by the modular embedding argument as well as the result of Siegel modular forms of degree two (Hammond [16]). So D satisfies the Assumption II and is in the case D(1). By the argument of the preceding section we have the following:

Theorem (Gundlach). Let $K = Q(\sqrt{5})$. Then $A(\Gamma_K) = C[G_2, G_6, \Theta_0, h]$. The generating function $P_{A(\Gamma_K)}(t)$ equals $(1+t^{15})/(1-t^2)(1-t^5)(1-t^6)$.

Let K be an arbitrary real quadratic field. Let σ be the automorphism of H^2 given by

$$z=(z_1, z_2) \longrightarrow \sigma z=(z_2, z_1).$$

A Hilbert modular form f is said to be *symmetric* if $f(z_1, z_2) = f(z_2, z_1)$. Let $\hat{\Gamma}_K$ be the composite of Γ_K and $\langle \sigma \rangle$ as groups acting on H^2 , and let $\hat{X}_K = H^2/\hat{\Gamma}_K \simeq X_K/\langle \sigma \rangle$. We denote by $A(\hat{\Gamma}_K)$ the graded ring of symmetric Hilbert modular forms. \hat{X}_K has a natural compactification $\hat{X}_K^* := X_K^*/\langle \sigma \rangle$ which equals $\text{Proj}(A(\hat{\Gamma}_K))$.

We return to the case $K=Q(\sqrt{5})$. Let D' be the irreducible divisor of \hat{X}_K defined by $z_1=z_2$, in other words, the image of D by the natural surjective map of X_K onto \hat{X}_K . In the above-mentioned system of generators of $A(\Gamma_K)$, G_2 , G_4 , h are symmetric and Θ_0 is anti-symmetric, i.e., $\Theta_0(z_2, z_1) = -\Theta(z_1, z_2)$. Then Θ_0^2 is symmetric and

$$\operatorname{div}(\Theta_0^2) = D'.$$

So D' is in the case D(1), and we have the following:

Theorem (Gundlach). Let $K=Q(\sqrt{5})$. Then $A(\hat{\Gamma}_K)=C[G_2, G_6, G_6]$, O_0^2 , h]. The generating function $P_{A(\hat{\Gamma})}(t)$ equals $(1+t^{15})/(1-t^2)(1-t^6)$ $(1-t^{10})$.

The image of $A(\hat{\Gamma}_X)^{(2)}$ by Ψ equals $A(\Gamma_1)^{(4)} = C[g_4, g_6^2]$, and the kernel is the ideal generated by Θ_0^2 . By the argument in § 2, $A(\Gamma_X)^{(2)}$ is shown to be equal to $C[G_2, G_6, \Theta_0^2]$ which is isomorphic to a polynomial ring. This shows in particular that the symmetric Hilbert modular function field for $Q(\sqrt{5})$ is rational. h^2 is written as a polynomial of G_2 , G_6 , Θ_0^2 , which has been explicitly done in Resnikoff [36], Hirzebruch [21].

Success in this line depends on finding out a "good" divisor of X_K or \hat{X}_K . We refer the reader to Hammond [16], Hermann [17, 18] for the case of real quadratic field K other than $Q(\sqrt{5})$. Although Hermann [18] might look like the case when D is not irreducible, it is actually the