$$A(i) \longrightarrow A(i+\nu(g)) \longrightarrow \overline{A}'$$

$$f \longrightarrow fg \longrightarrow (fg/\chi^{(i+\nu(g))/\tau})|_{\mathcal{B}}.$$

 $\Psi(0)$ equals Ψ by definition. The kernel of $\Psi(i)$ is just A(i+1) and hence $\Psi(i)$ is regarded also as an injective map of $\overline{A}(i)$ into \overline{A}' which is an \overline{A} -module homomorphism. By definition, the map A(i) to \overline{A}' given by $f \to \Psi(i+r)(\mathfrak{A}f)$ equals $\Psi(i)$, and in particular there is an inclusion $\Psi(i)(\overline{A}(i)) \subset \Psi(i+r)(\overline{A}(i+r))$. If we identify $\overline{A}(i)$ with its $\Psi(i)$ -image, then we have r ascending sequences of \overline{A} -modules;

$$\overline{A}(0) \subset \overline{A}(r) \subset \overline{A}(2r) \subset \cdots$$

$$\overline{A}(1) \subset \overline{A}(r+1) \subset \overline{A}(2r+1) \subset \cdots$$

$$\vdots$$

$$\overline{A}(r-1) \subset \overline{A}(2r-1) \subset \overline{A}(3r-1) \subset \cdots$$

Since all modules are submodules of \overline{A}' and since \overline{A}' is finite over \overline{A} , there is an integer i_0 such that

$$\overline{A}(i) = \overline{A}(i+r)$$
 for any $i \ge i_0$,

in other words, $\chi \overline{A}(i) = \overline{A}(i+r)$. Then if S is a graded subring of \overline{A} isomorphic to a polynomial ring, then A is isomorphic as graded S-modules, to $\overline{A}(0) \oplus \overline{A}(1) \oplus \cdots \oplus \overline{A}(i_0-1) \oplus \bigoplus_{\mu=0}^{\infty} (\overline{A}(i_0) \oplus \cdots \oplus \overline{A}(i_0+r-1)) \chi^{\mu}$, where A is regarded as an S-module by taking some homomorphism of S into A for which $S \to A \xrightarrow{\overline{A}} \overline{A}$ is the identity on S. Now suppose that the structures of \overline{A} and of a finite number of \overline{A} -submodules $\overline{A}(i)$, $1 \le i \le i_0 + r-1$, in \overline{A}' are determined. Then the generating function of A is given by

$$\sum_{i=0}^{i_0-1} P_{\mathcal{A}(i)}(t) + (1-t^{\deg(\chi)}) \left(\sum_{i=i_0}^{i_0+\tau-1} P_{\mathcal{A}(i)}(t) \right).$$

If $\{f_{j,0}\}$ (resp. $\{f_{j,i}\}$, $i \ge 1$) is any system of homogeneous elements in A (resp. A(i)) whose images by Ψ (resp. $\Psi(i)$) generate \overline{A} (resp. $\overline{A}(i)$ over \overline{A}), then A is generated by χ and $f_{j,i}$'s with $i \le i_0 + r - 1$. To this assertion, a proof similar to the case D(1) can be given, but we omit it.

Suppose that X, \mathcal{L} satisfy the Assumption I. Let

$$X_0 \subset X_1 \subset \cdots \subset X_m = X$$

be a sequence of inclusions of irreducible subvarieties of X such that the codimensions of X_j in X_{j+1} is one for every $j=0, \dots, m-1$. Furthermore suppose that the closure X_j of X_j in X^* satisfies a condition that the

codimension of $X_j - X_j$ in X_j is at least two for $j \ge 1$. Then X_j and $\mathcal{L}_{|x_j}, j \ge 1$, satisfy the Assumption I. If a divisor X_j in X_{j+1} satisfies the Assumption II for each $j = 0, \dots, m-1$ and if the above trick is successful for each j, then we may have some information about the graded ring associated with X_j , \mathcal{L}_j from the graded ring $\bigoplus_k H^0(X_0^*, \mathcal{L}_j(k)^*|_{X_0^*})$, X_0^* denoting the closure of X_0 in X^* .

§ 3. Hilbert modular forms

Let K be a totally real algebraic number filed of degree n>1, and let O_K be the maximal order of K. $SL_2(K)$ acts on the product H^n on n copies of the upper half plane $H=\{z_1\in C\,|\, \text{Im }z_1>0\}$ by the modular substitution;

$$z=(z_1, \dots, z_n) \longrightarrow Mz = \left(\frac{\alpha^{(1)}z_1+\beta^{(1)}}{\gamma^{(1)}z_1+\delta^{(1)}}, \dots, \frac{\alpha^{(n)}z_n+\beta^{(n)}}{\gamma^{(n)}z_n+\delta^{(n)}}\right)$$

where $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(K)$ and $\alpha^{(1)}, \dots, \alpha^{(n)}$ denote the conjugates of $\alpha \in K$. The jacobian j(M, z) at z, of the automorphism of H^n induced by M, is $N(7z+\delta)^{-2} = \prod_{k=1}^{n} (\Upsilon^{(i)}z+\delta^{(i)})^{-2}$. Let Γ_K denote the Hilbert modular group $SL_2(O_K)$. Γ_K acts properly discontinuously on H^n . Let $X_K := H^n/\Gamma_K$. X_K has a natural compactification X_K^* , which is given by adding h points called cusps to X_K , h denoting the class number of K, and X_K^* is normal and projective. A holomorphic function f on H^n is called a Hilbert modular form for Γ_K of weight $k \in Z$, ≥ 0 if it satisfies

$$f(Mz) = N(rz + \delta)^k f(z), \qquad M = \begin{pmatrix} \alpha & \beta \\ r & \delta \end{pmatrix} \in \Gamma_K.$$

We denote by $A(\Gamma_K) = \bigoplus_k A(\Gamma_K)_k$ the graded ring of Hilbert modular forms. X_K^* is canonically isomorphic to $\text{Proj}(A(\Gamma_K))$.

For later use, we fix some notations of elliptic modular functions. Let $\Gamma_1 = SL_2(\mathbb{Z})$. $A(\Gamma_1)$ denotes the graded ring of elliptic modular forms for Γ_1 . $g_4(\tau)$, $g_6(\tau)$, $\tau \in H$, denote the Eisenstein series of weight 4, 6 respectively, and $\Delta(\tau)$ denotes the cusp form of weight 12 which is written as a polynomial of g_4 , g_6 . $A(\Gamma_1)$ is generated by g_4 , g_6 , and $A(\Gamma_1)^{(4)}$ is generated by g_4 and g_6^2 .

We embed H diagonally into H^n :

$$\begin{array}{ccc} H \longrightarrow H^n \\ \tau \longrightarrow (\tau, \cdot \cdot \cdot, \tau). \end{array}$$