$$\Psi \colon A \longrightarrow B$$
$$f \longrightarrow f|_{D}$$

which is associated with the inclusion map of D into X, or D^* into X^* . We write

$$\overline{A} := \text{Im } \Psi$$

which is a graded subring of B. Now we make the following assumption on D.

Assumption II. There is a homogeneous element χ in A such that χ vanishes only at D. Any such element is equal to a power of χ up to a constant factor.

Under the first condition in the Assumption II, the existence of χ satisfying the second is equivalent to the assertion that if $\varphi \colon \widetilde{X} {\to} X$ is the normalization, then $\widetilde{D} = \varphi^{-1}(D)$ is irreducible. For a positive rational number r we call D(r) the following condition on D; D(r): χ defines $r\tilde{D}$ in \widetilde{X} where χ is regarded as an element of $\bigoplus_k H^0(\widetilde{X}, \varphi^*(\mathcal{L}(k)))$. For simplicity, we shall deal only with the case r integral, because the similar argument is applicable to the general case. We note that D(1) is the case that D is defined ideal-theoretically by χ in X. χ defines also a subscheme of X^* , which equals D^* set-theoretically. All irreducible subvarieties in X of codimension one satisfy D(r), $r \le r_x$ for some fixed $r_x \in Z$, if $Pic(X) \simeq Z + \{finite torsion\}$, which is the case if $X = \mathcal{D}/\Gamma$ and $\bar{\mathscr{L}}$ are as in the Example 1 where \mathscr{D} is an irreducible bounded symmetric domain under a certain condition and Γ has a finite commutator factor group (cf. Tsuyumine [55]). All of them satisfy in D(1) particular if $\operatorname{Pic}(X) \simeq Z$ and if an automorphy factor ρ is taken suitably (loc. cit., see also Freitag [8, 9]).

The Assumption II implies that the divisor nD, for some positive integer n, corresponding to an ample invertible sheaf, and hence that \mathcal{F} is surjective for graded parts of sufficiently large degree which is $\equiv 0 \pmod{d'}$, d' being sufficiently divisible.

Let us consider the primitive case D(1). Suppose that the structure of \overline{A} is known, e.g., B is known and \overline{Y} is surjective which is often the case (but not always) in the study of rings of automorphic forms. Then we can deduce some information on A from \overline{A} . In the case of D(1), the generating function $P_A(t)$ of A is given by $(1-t^{\deg(x)})P_A(t)$, $\deg(x)$ denoting the degree of x in A. If $\{f_i\}$ is any system of homogeneous elements in A whose images by Y generate \overline{A} , then A is generated by x and the f_i

In particular if the ring \overline{A} is isomorphic to a polynomial ring, then A is too, and furthermore A and $\overline{A}[X]$ are isomorphic as graded rings. The first assertion follows from an exact sequence

$$0 \longrightarrow (\chi) \longrightarrow A \stackrel{\Psi}{\longrightarrow} \overline{A} \longrightarrow 0.$$

Let f be any homogeneous element in A, and let $k=\deg(f)$. We are able to prove by induction on k, that f is contained in the ring generated by χ and the f_i 's. If k < 0, then the assertion is trivial. Suppose that it is true for an element of degree < k. $\Psi(f)$ is written as a polynomial $Q(\Psi(f_1), \cdots)$ of $\Psi(f_i)$'s. Then the image of $f - Q(f_1, \cdots)$ by Ψ vanishes, and hence it is divisible by χ . If $f - Q(f_1, \cdots) = \chi g$, then g is of degree < k, and by the induction hypothesis g is written by χ and the f_i 's, and hence f is. The third assertion is immediate from the fact that in the above exact sequence Ψ has a section by assumption.

The general case is to be treated somewhat delicately. Let $\omega': \tilde{X}^*$ $\to X^*$ be the normalization, which is an extension of $\varphi: \tilde{X} \to X$. Let \tilde{D}^* be the closure of \widetilde{D} in \widetilde{X}^* , and let $\overline{A}' := \bigoplus_k H^0(\widetilde{D}^*, \varphi'^*(\mathcal{L}(k)^*)|_{\widetilde{D}^*})$, which is a homogeneous coordinate ring of \tilde{D}^* . Since $\varphi'|_{D^*}: \tilde{D}^* \to D^*$ is a finite morphism, it is shown that \overline{A}' is finite over \overline{A} as a module. Now let us define a valuation on A in terms of \tilde{D} . Let $f \in A$ be a homogeneous element. Then for some integer m>0, f^m can be regarded as a global section of the invertible sheaf $\mathcal{L}(k)$, $k \equiv 0 \pmod{d}$, and hence that of the invertible sheaf $\varphi^*(\mathcal{L}(k))$ on \tilde{X} . Then $\nu(f^m)$ is defined to be the vanishing order of f^m at \tilde{D} , and $\nu(f)$ is defined to be $\nu(f^m)/m$ ($\nu(0) = +\infty$). It is easy to check that ν is well-defined. If $\nu(f) = k'r$ for an integer k'. then $f/X^{k'}$ defines a global section of $\varphi^*(\mathcal{L}(k))$ for $k = \deg(f) - \deg(X^{k'})$ (not necessarily that of $\mathcal{L}(k)$), and so $(f/\chi^{k'})|_{n} \in \overline{A}'$. We denote again by Ψ the map $f/\chi^{k'} \rightarrow (f/\chi^{k'})|_{D}$, which is an extension of the previous Ψ . For an integer i, let A(i) be the ideal of A generated by homogeneous elements f with $\nu(f) > i$. There is a filtration

$$A = A(0) \supset A(1) \supset A(2) \supset \cdots$$

Let

$$\overline{A}(i)$$
:= $A(i)/A(i+1)$.

 $\overline{A}(0)$ equals \overline{A} , which is a noetherian graded ring, and $\overline{A}(i)$'s are noetherian graded modules over \overline{A} . Let us fix some i'. If k' is large enough, then there is a homogeneous element g in A(k'r-i')-A(k'r-i'+1), where g is taken to be 1 if $i'\equiv 0\pmod{r}$. Fixing such g, we define a map $\overline{A}(i)$ of $\overline{A}(i)$ of $\overline{A}(i)$ for $i\equiv i'\pmod{r}$, by