Modular Forms

Let $i: X \longrightarrow X^*$ be the natural injection. We write $\mathcal{L}(k)^* = i_*(\mathcal{L}(k))$, which is a coherent sheaf on X^* and which is an ample invertible sheaf if $k \equiv 0 \pmod{d}$. $H^0(X^*, \mathcal{L}(k)^*)$ is equal to $H^0(X, \mathcal{L}(k))$ for any k. There is a finite morphism of X^* onto X which is the identity on X. X^* , X are not necessarily equal, however they are when X is normal.

Let $A_k = H^0(X, \mathcal{L}(k))$, which is the graded part in A of degree k, so that $A = \bigoplus_k A$. A formal power series $P_A(t)$ in a variable t is called the generating function of A if

$$P_A(t) = \sum_k (\dim_C A_k) t^k$$
.

Since A is noetherian, $P_A(t)$ is a rational function of t by the Hilbert theorem.

Let V be an irreducible subvariety in X, and let \overline{V} be the closure of V in X^* . We note that if $\overline{V} - V$ is of codimension at least two in \overline{V} , then V and $\mathcal{L}|_{V}$ satisfy the Assumption I.

Example 1. Let \mathcal{D} be a bounded symmetric domain. \mathcal{D} is written as a quotient $G(R)^{\circ}/K$ where $G(R)^{\circ}$ is the (topological) identity component of the group of real points of a semi-simple algebraic group G over Q, and K is a maximal compact subgroup of $G(R)^{\circ}$. Let Γ be an arithmetic subgroup of G, which acts properly discontinuously on \mathcal{D} . By Baily-Borel [1], there is a natural compactification $(\mathcal{D}/\Gamma)^*$ which is called a Baily-Borel-Satake compactification. It is a normal projective algebraic variety and has \mathcal{D}/Γ as an open subvariety. Now let us suppose that G has no normal G-subgroup of dimension three with G-rank one. Then codim $(\mathcal{D}/\Gamma)^* - \mathcal{D}/\Gamma$ is at least two. So if we put G-rank one. Then satisfies the first condition in the Assumption I. We take as G, the quasi-coherent sheaf corresponding to automorphic forms for G on G, whose details are given in the following.

Let ρ be a (holomorphic) automorphy factor, i.e., the function on $\Gamma \times \mathcal{D}$ with values in $C - \{0\}$ such that (i) $\rho(\tau, z)$ is holomorphic in z for any fixed $\tau \in \Gamma$, (ii) $\rho(\tau \tau', z) = \rho(\tau, \tau' z) \cdot \rho(\tau', z)$ for $\tau, \tau' \in \Gamma$, and (iii) $\rho(\tau, z) = \rho(\tau', z)$ if τ, τ' induce the same automorphism of \mathcal{D} . Let $j(\tau, z)$ be the jacobian at a point $z \in \mathcal{D}$, of an automorphism of \mathcal{D} induced by $\tau \in \Gamma$. $j(\tau, z)$ is an example of automorphy factors. Let us consider the automorphy factor ρ which is of the form

$$\rho(\gamma,z) = v(\gamma)j(\gamma,z)^{-r}$$

where r is a positive rational number and v is a multiplier whose value for $\gamma \in \Gamma$ is an m-th root of unity for some fixed $m \in Z$. v is depending on the choice of the branches of $j(\gamma, z)^{-r}$ if $r \in Q - Z$. Let π denote the

canonical projection of \mathscr{D} onto \mathscr{D}/Γ . We define $\mathscr{L}(k)$ to be the coherent sheaf corresponding to ρ^k -automorphic forms, i.e., the sheaf defined by

$$H^0(U,\mathcal{L}(k)) = \{ f \in \mathcal{O}_{\pi^{-1}(U)} | f(\gamma z) = \rho(\gamma,z)^k f(z) \quad \text{for } z \in \pi^{-1}(U), \gamma \in \Gamma \},$$

where U is any analytic open subset of \mathfrak{D}/Γ , and $\mathcal{O}_{\pi^{-1}(U)}$ denotes the structure sheaf of $\pi^{-1}(U)$ in analytic sense. $\mathcal{L}(k)$ extends to a coherent sheaf on $(\mathfrak{D}/\Gamma)^*$ (Serre [44]), and in particular it is algebraic. By Baily-Borel [1], $\mathcal{L}(k)$ extends to an ample invertible sheaf on $(\mathfrak{D}/\Gamma)^*$ if k is sufficiently divisible.

So $X = \mathcal{D}/\Gamma$ and $\mathcal{L} = \bigoplus_k \mathcal{L}(k)$ satisfy the conditions in the Assumption I, if G has no normal Q-subgroup of dimension three with Q-rank one. $A_k = H^0(X, \mathcal{L}(k))$ is the space of ρ^k -automorphic forms, i.e., holomorphic functions f on \mathcal{D} satisfying $f(7z) = \rho(7, z)^k f(z)$ for $\gamma \in \Gamma$. $A = \bigoplus_k A_k$ is the graded ring of such automorphic forms.

Example 2. Let \mathcal{D} , Γ be as above. Let X be an irreducible subvariety of \mathcal{D}/Γ such that the closure X of X in $(\mathcal{D}/\Gamma)^*$ satisfies that codim $(X-X)\geq 2$. Then X and the sheaf given by restricting to X, the quasi-coherent sheaf on \mathcal{D}/Γ corresponding to automorphic forms, satisfy the conditions in the Assumption I. Such is the moduli space \mathfrak{M}_g of curves of genus $g\geq 3$, which we discuss later.

Remark. Let the notation be as in the Example 1. To investigate the structure of A, usually we had better to take r>0 as small at possible. If otherwise, it might make the structure of A unnecessarily complicated. For instance, if we compare a polynomial ring and its subring consisting of polynomials of degree $\equiv 0 \pmod{d}$ for d>1, then the former is easier to handle than the latter.

\S 2. A graded ring and a subring

Let X, \mathcal{L} be as in the preceding section. Let D be an irreducible subvariety in X of codimension one, and let D^* be the closure of D in X^* .

By is noetherian and is a homogeneous coordinate ring of D^* , hence $D^* = \operatorname{Proj}(B)$. A global section f of $\mathcal{L}(k)$ on X can be regarded as that $\operatorname{Obs}(\mathcal{L}(k))^*$ on X^* , and hence $f|_D$ determines the unique element of B_k whose restriction to D equals $f|_D$. We have a homomorphism of graded rings.