Proof. From Lemma 4 and Lemma 9 (3), The dimension of the Ay ; is not
greater than the coefficient of z* on the formal power series development.

1.6 5n+6 +-’L' 11
A-22)(1 - 29)(1 - 2°) Zx - z2)(1-x3)(1—x5)

B 28 4 29 + 212 — g4
- (1-2)(1 - 281 - 29)

4 Remark

Our estimation is quite rough. Generally, this estimation is not good for large
! and dg. In fact, this article and the exposition [1] show the following results.
(1) If dg = 5, this estimation is sharp if I = 0,2. When [ = 1, this estimation
is ‘quite’ sharp: we know the true dimension from this estimation easily.

(2) If dc = 12, this estimation is sharp only if | = 0. When ! = 1, this estimation
is ‘quite’ sharp.

(3) If dx = 8 this estimation is sharp only if ! = 0. Even if = 1, this estimation
is not sharp.

In other cases, to determine the true dimension from this estimation, the author
think that we need more ideas.
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