3.2 The case of discriminant 5

Gundlach[5] determined the ring structure of $A_{*,0}$. There are three algebraically independent generators

$$G_2 \in A_{2,0}$$
 $(D_0(G_2) = e_4),$
 $G_5 \in A_{5,0}$ $(D_0(G_5) = 0, D_1(G_5) = \Delta),$
 $G_6 \in A_{6,0}$ $(D_0(G_6) = \Delta)$

and one algebraically dependent generators

$$G_{15} \in A_{15,0} \qquad (D_0(G_{15}) = \Delta^2 e_6).$$

We remark that G_2, G_6, G_{15} are symmetric and that G_5 is skew-symmetric. Let

$$R:=\mathbb{C}[G_2,G_5,G_6].$$

Gundlach showed

$$A_{*,0} = R \oplus RG_{15}$$

Define

$$\begin{split} G_{8,1} &:= [G_2,G_5]_1 \in A_{8,1} & (D_0(G_{8,1}) = \Delta e_4) \,, \\ G_{9,1} &:= [G_2,G_6]_1 \in A_{9,1} & (D_0(G_{9,1}) = \Delta e_6) \,, \\ G_{12,1} &:= [G_5,G_6]_1 \in A_{12,1} & (D_0(G_{12,1}) = -3\Delta^2) \,, \\ G_{6,2} &:= [G_2,G_2]_2 \in A_{6,2} & (D_0(G_{6,2}) = 864\Delta) \end{split}$$

and

$$G_{9,2} := [G_2, G_5]_2 \in A_{9,2}$$
 $(D_0(G_{9,2}) = 3\Delta e_6).$

Now we have proved the following theorem:

Theorem 8. $A_{*,2}$ is a free R-module generated by $G_{6,2}$ and $G_{9,2}$. Namely,

$$A_{*,2} = RG_{6,2} \oplus RG_{9,2}.$$

Lemma 9. We have three equations:

- (1) $\dim_{\mathbb{C}} A_{5n+12,1}(n) = 2$. $A_{5n+12,1}(n) = \mathbb{C}G_5^n G_2^2 G_{8,1} \oplus \mathbb{C}G_5^n G_{12,1}$.
- (2) $\dim_{\mathbb{C}} A_{5n+8,1}(n) = 1$. $A_{5n+8,1}(n) = \mathbb{C}G_5^n G_{8,1}$.
- (3) $A_{5n+6,1}(n) = \{0\}.$

Proof. From Lemma 4, easily we have (1)(2) and $\dim_{\mathbb{C}} A_{5n+6,1}(n) \leq 1$. Assume that there exist $F \in A_{5n+6,1}(n)$ such that $D_n(F) = \Delta^{n+1}$. Because $D_n(G_5^nG_2^2G_{8,1}) = \Delta^{n+1}e_4^3$, $D_n(G_5^nG_{12,1}) = -3\Delta^{n+2}$ and $D_n(G_5^nG_{8,1}) = \Delta^{n+1}e_4$, we have $G_2F = G_5^nG_{8,1}$ and $-3G_6F = G_5^nG_{12,1}$. Hence we have

$$0 = 6G_6G_5^nG_{8,1} + 2G_2G_5^nG_{12,1} = 5G_5^{n+1}G_{9,1}.$$

This is a contradiction.

Theorem 10. $A_{*,1}$ is generated by $G_{8,1}$, $G_{9,1}$ and $G_{12,1}$ as a R-module. The Jacobi identity is a unique relation between these generators. Namely,

$$A_{*,1} = \mathbb{C}[G_2, G_5]G_{8,1} \oplus RG_{9,1} \oplus RG_{12,1}.$$