conditions:

(1) For any fixed $\omega_0 \in \mathbb{H}$, the function $f(\tau, \omega_0)$ on $\tau \in \mathbb{H}$ belongs to $M_k(\widetilde{\Gamma})$.

(2) For any fixed $\tau_0 \in \mathbb{H}$, the function $f(\tau_0, \omega)$ on $\omega \in \mathbb{H}$ belongs to $M_l(\widetilde{\Gamma})$. We denote by $M_{k,l}(\widetilde{\Gamma})$ the space of all Witt modular forms of weight (k, l) with respect to $\widetilde{\Gamma}$. For $r, s \in \mathbb{N} \cup \{0\}$, define subspaces of $M_{k,l}(\widetilde{\Gamma})$ by

$$\mathrm{M}_{k,l}(\widetilde{\Gamma};r,s) := \left\{ \begin{array}{ll} f \in \mathrm{M}_{k,l}(\widetilde{\Gamma}) & \left| \begin{array}{ll} f(\tau,\omega_0) \in \mathrm{M}_k(\widetilde{\Gamma};r) & \text{for any } \omega_0 \in \mathbb{H} \\ f(\tau_0,\omega) \in \mathrm{M}_l(\widetilde{\Gamma};s) & \text{for any } \tau_0 \in \mathbb{H} \end{array} \right\}.$$

By Witt [Wi, Satz A], we have

$$\mathrm{M}_{k,l}(\widetilde{\Gamma};r,s)=\mathrm{M}_k(\widetilde{\Gamma};r)\otimes_{\mathbb{C}}\mathrm{M}_l(\widetilde{\Gamma};s).$$

Hence its Poincaré series is given by

$$\begin{split} P_{(\widetilde{\Gamma};r,s)}(x,y) := & \sum_{k,l \in \mathbb{N} \cup \{0\}} \left(\dim_{\mathbb{C}} \mathcal{M}_{k,l}(\widetilde{\Gamma};r,s) \right) x^k y^l \\ = & P_{(\widetilde{\Gamma};r)}(x) P_{(\widetilde{\Gamma};s)}(y) \\ = & \frac{x^{12r} y^{12s}}{(1-x^4) \left(1-x^6\right) \left(1-y^4\right) \left(1-y^6\right)}. \end{split}$$

Put $M_{k,l}(\widetilde{\Gamma};r) := M_{k,l}(\widetilde{\Gamma};r,r)$. We say $f \in M_{k,k}(\widetilde{\Gamma};r)$ is symmetric or skew-symmetric if $f(\tau,\omega) = f(\omega,\tau)$ or $f(\tau,\omega) = -f(\omega,\tau)$ and denote by $f \in M_{k,k}^{\mathrm{sym}}(\widetilde{\Gamma};r)$ or $f \in M_{k,k}^{\mathrm{skew}}(\widetilde{\Gamma};r)$, respectively. The structure of these spaces are easily determined. Their Poincaré series are given by

$$\begin{split} P_{(\widetilde{\Gamma};r)}^{\mathrm{sym}}(x) &:= \sum_{k \in \mathbb{N} \cup \{0\}} \left(\dim_{\mathbb{C}} \mathcal{M}_{k,k}^{\mathrm{sym}}(\widetilde{\Gamma};r) \right) x^k \\ &= \frac{x^{12r}}{\left(1 - x^4 \right) \left(1 - x^6 \right) \left(1 - x^{12} \right)}, \\ P_{(\widetilde{\Gamma};r)}^{\mathrm{skew}}(x) &:= \sum_{k \in \mathbb{N} \cup \{0\}} \left(\dim_{\mathbb{C}} \mathcal{M}_{k,k}^{\mathrm{skew}}(\widetilde{\Gamma};r) \right) x^k \\ &= \frac{x^{12(r+1)}}{\left(1 - x^4 \right) \left(1 - x^6 \right) \left(1 - x^{12} \right)}. \end{split}$$

3.3 Differential operator

For a complex domain X, we denote by $\operatorname{Hol}(X,\mathbb{C})$ the set of all holomorphic functions from X to \mathbb{C} . For $r \in \mathbb{N}_0 := \{0, 1, 2, \dots\}$, define a differential