Problems for a take home exam.

I. (No partial credit)

1). Let X,Y be metric spaces with metrics d_x (and d_y resp.), let $f: X \to Y$ be a map, and $x \in X$.

Prove: f is continuous at $x_0 \iff \forall \epsilon > 0 \exists \delta > 0$ such that for all x with $d_x(x_0,x) < \delta$ we have $d_y(f(x_0),f(x)) < \epsilon$.

- 2). Solve problem 2). on page 2 of the lecture notes.
- 3). Show that each metric space is regular.

II. (Partial credit)

4). Prove: Each pathwise connected topological space is connected.

Remark: The converse is not true. The subspace

of the plane is connected, but not pathwise connected. However we have:

- 5). Prove: A manifold is pathwise connected if and only if it is connected.
- 6). Show that each pathwise connected subspace of ${\mathbb R}$ is an (open, half-open or closed) interval.
- 7). Prove that the subspace of \mathbb{R}^3

$$X = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 0 \text{ and } z \neq 0\}$$

is homotopically equivalent to the disjoint union of two circles.