Show that the map

- a). Show f is continuous at $x_0 = 0$. For an arbitrary $\varepsilon > 0$ choose $\delta = \varepsilon^3$. Then for each $x \in \mathbb{R}$ we have $|x-x_0| < \delta \to |x| < \varepsilon^3 \to |\sqrt[3]{x}| = |f(x)-f(x_0)| < \varepsilon$. Hence f is continuous at $x_0 = 0$.
- b). Show that f is continuous at all $x_0 \neq 0$. (Hint: Use the identity $(a^2+ab+b^2)(a-b) = a^3-b^3$).

Assume $x_0 \neq 0$ and $\varepsilon > 0$. For any $x \in \mathbb{R}$ which has the same sign as x_0 , apply the above identity to $a = \sqrt[3]{x}$ and $b = \sqrt[3]{x}$ and obtain

$$\begin{array}{l} (x-x_{o}) \; = \; (\frac{3}{\sqrt{x}}^{2} \; + \frac{3}{\sqrt{x}} \; \cdot \; \frac{3}{\sqrt{x_{o}}} \; + \frac{3}{\sqrt{x_{o}}}^{2}) \, (\frac{3}{\sqrt{x}} \; - \frac{3}{\sqrt{x_{o}}}) \; \; \text{ and, since} \\ |\frac{3}{\sqrt{x}}^{2} \; + \frac{3}{\sqrt{x}} \; \cdot \; \frac{3}{\sqrt{x_{o}}} \; + \frac{3}{\sqrt{x_{o}}}^{2} \, | \; = \frac{3}{\sqrt{x}}^{2} \; + \frac{3}{\sqrt{x}} \, \frac{3}{\sqrt{x_{o}}} \; + \frac{3}{\sqrt{x_{o}}}^{2} \; \geq \; \frac{3}{\sqrt{x_{o}}}^{2} \; > \; 0, \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{3\sqrt{x_{o}}^{2}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{3\sqrt{x_{o}}^{2}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{\sqrt{x_{o}}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{\sqrt{x_{o}}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{\sqrt{x_{o}}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{\sqrt{x_{o}}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{\sqrt{x_{o}}} \; . \\ |f(x) \; - \; f(x_{o})| \; = \; |\frac{3}{\sqrt{x}} \, - \; \frac{3}{\sqrt{x_{o}}} | \leq \; |x-x_{o}| \; \cdot \; \frac{1}{\sqrt{x_{o}}} | \geq \; \frac{1}{\sqrt{x_{o}}} |$$

implies that x has the same sign as x_0 , and that $|f(x) - f(x_0)| < \epsilon$. Hence f is continuous at x_0 .

- c). Find a continuous inverse of f. The map $g: \mathbb{R} \to \mathbb{R}$ with $g(y) = y^3$ is clearly an inverse of f. Moreover it is continuous since it can be obtained by threefold multiplication of the identity map with itself.
- a). and b). show that f is a continuous map, by c). f has a continuous inverse, hence f is a homeomorphism.