X is pathwise connected, \exists path $g: I \rightarrow X$ with $g(0) = x_0$ and $g(1) = x_1$. Since f is continuous, $f \circ g: I \rightarrow Y$ is continuous with $f \circ g(0) = y_0$ and $f \circ g(1) = y_1$. We have shown that any two points y_0 and y_1 in Y can be joined by a path, i.e. Y is pathwise connected.

4). Prove that $S^2 - \{(0,0,1) \cup (0,0,-1)\}$ and $S^1 \times (-1,1)$ are homeomorphic.

Proof: S^2 -{(0,0,1) U (0,0,-1)} is the sphere with top and bottom point deleted. $S^1 \times (-1,1)$ is a cylinder.

For each level $z=z_0\in(-1,1)$ the plane $z=z_0$ intersects both the sphere and the cylinder in a circle. By stretching these circles into one another, we get the following level preserving maps

$$S^{2} - \{(0,0,1) \cup (0,0,-1)\} \xrightarrow{f} S^{1} \times (-1,1)$$

$$(x, y, z) \xrightarrow{f} (\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}, z)$$

$$((\sqrt{1-t^{2}})x, (\sqrt{1-t^{2}})y,t) \leftarrow g (x, y, t)$$

Since for $(x,y,z) \in S^2$ we have $\sqrt{x^2+y^2} = \sqrt{1-z^2}$, it is easy to see that $f \circ g = Id$ and $g \circ f = Id$. Both f and g are continuous since their component functions are obtained from the projection maps by such continuity preserving operations as squaring, addition, square root, divisions etc. Hence f is the required homeomorphism.