- 2). Prove one of the following two statements:
 - a). The product of two Hausdorff spaces is Hausdorff.

Proof of 2a): Let X and Y be Hausdorff spaces, and (x_0,y_0) , (x_1,y_1) two distinct points in X × Y. Then either $x_0 \neq x_1$ or $y_0 \neq y_1$. In the first case \exists disjoint neighborhoods U_{X_0} and U_{X_1} of x_0 (resp. x_1) in X, and $U_{X_0} \times Y$ and $U_{X_1} \times Y$ are disjoint neighborhoods of (x_0,y_0) (resp. (x_1,y_1)) in X × Y. A similar argument establishes the existence of disjoint neighborhoods of (x_0,y_0) and (x_1,y_1) in the case $y_0 \neq y_1$. Hence $X \times Y$ is Hausdorff.

Proof of 2b): Let X and Y be two pathwise connected spaces, and let (x_0,y_0) and (x_1,y_1) be any two points in X × Y. Then because of the pathwise connectedness of X and Y we have paths $g_X: I \to X$ (resp. $g_Y: I \to Y$) joining x_0 to x_1 (resp. y_0 to y_1). The product path

$$g : I \longrightarrow X \times Y$$
 $t \longrightarrow (g_X(t), g_Y(t))$

is continuous (because its component maps g_x and g_y are) and joins (x_0,y_0) to (x_1,y_1) . Hence $X\times Y$ is pathwise connected. 3). Let X,Y be topological spaces and $f:X\to Y$ continuous and onto. Then if X is pathwise connected, so is Y. Proof: Let y_0 and y_1 be arbitrary points in Y. Since f is onto, $\exists x_0,x_1\in X$ s.t. $f(x_0)=y_0$ and $f(x_1)=y_1$. Since