between S^n and \mathbb{R}^n for n>1, therefore one has to use here other ways to translate topological problems into algebraic ones. One of the possible concepts is given by higher dimensional homotopy groups $\pi_n(X,x_o)$ based on homotopy classes of maps $c:\mathbb{E}^n\to X$ with $c(S^{n-1})=\{x_o\}$. Then we have $\pi_n(S^n)=\mathbb{Z}$ and $\pi_n(\mathbb{E}^{n+1})=0$ and $\pi_n(\mathbb{R}^n)=0$, and this implies the following generalizations of Cor. 1 and 2 on pp. 18 and 19:

No retraction-theorem: There exists no continuous map $f: E^{n+1} \to S^n \quad \text{with} \quad \forall \ x \in S^n \quad f(x) = x \quad (n = 0, 1, \ldots)$ Brower fixed point theorem: Each continuous map $f: E^n \to E^n$ has at least one fixed point $x \in E^n$ (i.e. f(x) = x)

There are still other tools in algebraic topology which allow to prove results like $\mathbb{R}^n \ddagger \mathbb{R}^m$ for n \ddagger m; and many, many other theorems about topological spaces and continuous maps.

Appendix 1: Solutions of the problems of the first hourly.

1). Prove that each subspace of a Hausdorff space is Hausdorff.

Let X be a Hausdorff space and A \subset X. We have to show that any two different points x_1 and x_2 in A can be separated by disjoint neighborhoods in A. Since $x_1, x_2 \in X$ we have open subsets U_{x_1} and U_{x_2} in X with $x_1 \in U_{x_1}$ and $x_2 \in U_{x_2}$ and $U_{x_1} \cap U_{x_2} = \emptyset$. Then $V_{x_1} = U_{x_1} \cap A$ and $V_{x_2} = U_{x_2} \cap A$ are open in A, $v_1 \in V_{x_1}$, $v_2 \in V_{x_2}$ and we have clearly $V_{x_1} \cap V_{x_2} = \emptyset$. V_{x_1} and $V_{x_2} \cap V_{x_2} \cap V_{x_3} \cap V_{x_4} \cap V_{x_5} \cap V_{$