(resp. rational) numbers, with the usual addition + as composition, form a group denoted by \mathbb{R} (resp. \mathbb{Q}).

- 3). The punctured real line \mathbb{R} {0}, together with the usual multiplication σ as composition, forms a group.
- 4). The circle S^1 , together with the usual complex multiplication \circ , forms a group.
- 5). If X is a topological space, the set Aut(X) of all homeo-morphisms from X onto itself, together with the usual composition as maps, forms a group.

Let G_1 and G_2 be groups. Compose two elements (g_1,g_2) and $(\tilde{g}_1,\tilde{g}_2)$ of the product set $G_1\times G_2$ as follows:

$$(g_1,g_2) \circ (\widetilde{g}_1,\widetilde{g}_2) = (g_1 \circ \widetilde{g}_1, g_2 \circ \widetilde{g}_2)$$
.

The set $G_1 \times G_2$, together with this composition, forms a group, the product group of G_1 and G_2 .

<u>Definition:</u> Let G_1 and G_2 be groups. A map $f:G_1 \to G_2$ is called a group homomorphism if

Examples: The inclusion i : $\mathbb{Z} \to \mathbb{R}$ is a group homomorphism, as is the map

$$f : \mathbb{Z} \xrightarrow{} \mathbb{Z}_{2}$$
even $\#'s \rightarrow 0$
odd $\#'s \rightarrow 1$.

<u>Definition:</u> A map $f: G_1 \to G_2$ is <u>group isomorphism</u> if it is a group homomorphism and has an inverse map (which is also a group homomorphism). If there is a group isomorphism between two groups,