group of X relative the basepoint x_0 . Define $c_{x_0} \in \mathcal{L}(X,x_0)$ by $c_{x_0}(t) = x_0$ for all $t \in I$, and denote its homotopy class $[c_{x_0}]$ by 0 or $[x_0]$. Also, for $[c] \in \pi_1(X,x_0)$ define -[c] by $-[c] = [c^1]$, where $c^1 \in \mathcal{L}(X,x_0)$ is defined by $c^{-1}(t) = c(1-t)$.

Exercise: Prove that the addition of $\pi_1(X,x_0)$ has the following properties

- (i) (associativity): ([c]+[\tilde{c}]) + [\tilde{c}] = [c] + ([\tilde{c}]+[\tilde{c}]) for any three elements [c], [\tilde{c}], [\tilde{c}] $\in \pi_1(X, x_0)$
- (ii) for all [c] $\in \pi_1(X,x_0)$ [c] + 0 = 0 + [c] = [e]
- (iii) for all [c] $\in \pi_1(X, x_0)$ [c] + (-[c]) = (-[c]) + [c] = 0 i.e. $\underline{\pi_1(X, x_0)}$ is a group in the sense below.

M. Groups

<u>Definition:</u> A group is a set G together with a composition e which to any two elements $g_1, g_2 \in G$ associates an element $g_1 \circ g_2$ of G, such that

- (i) $\forall g_1, g_2, g_3 \in G$ $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$ (associativity)
- (ii) $\exists e \in G$ such that $\forall g \in G$ $g \cdot e = e \cdot g = g$ (e is called the zero element or the unit of G)
- (iii) $\forall g \in G \quad \exists g^{-1} \in G \quad \text{such that} \quad g \circ g^{-1} = g^{-1} \circ g = e$ $(g^{-1} \quad \text{is called the} \quad \underline{\text{inverse}} \quad \text{of} \quad g).$

Examples.

- O). The group consisting only of its unit and having no other elements is denoted by O.
- 1). \mathbb{Z}_2 is the group consisting of two elements 0 and 1 with the composition + given by 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1.
- 2). The integer numbers $\{0,\pm 1,\pm 2,\ldots\}$, together with the usual addition +, form a group denoted by \mathbb{Z} . Similarly the real