L. The fundamental group (I)

Let X be a topological space and x_0 a fixed point in X referred to as base point. Then in the set of loops

 $\mathcal{L}(X,x_0) = \{c : I \to X \text{ continuous s.t. } c(0) = c(1) = x_0\}$ there is the following equivalence relation ("homotopy with fixed endpoints"):

For a loop c $\in \mathcal{Z}(X,x_0)$, we denote its equivalence class by

[c] = {c'
$$\in \mathcal{L}(X,X_0)$$
 | c' \sim c} $\subset \mathcal{L}(X,X_0)$

Such an equivalence class is a special subset of $\mathcal{L}(X,x_0)$, and each loop c is in exactly one equivalence class (namely in [c]). The set of all these equivalence classes is denoted by $\frac{\pi_1(X,x_0)}{\pi_1(X,x_0)}$.

There is a composition of loops: for $c,\tilde{c}\in\mathcal{L}(X,x_0)$ define a new loop $c+\tilde{c}\in\mathcal{L}(X,x_0)$ by

$$c + \widetilde{c} : I \longrightarrow X$$

$$(c+\widetilde{c})(t) = \begin{cases} c(2t) & \text{if } 0 \le t \le \frac{1}{2} \\ \widetilde{c}(2t-1) & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

If $c \sim c'$ and $\widetilde{c} \sim \widetilde{c}'$, then $c + \widetilde{c} \sim c' + \widetilde{c}'$.

Now, let α and $\widetilde{\alpha}$ be elements of $\pi_1(X,x_0)$; we can choose loops $c,\widetilde{c}\in\mathcal{Z}(X,x_0)$ such that $\alpha=[c]$ and $\widetilde{\alpha}=[\widetilde{c}]$. Then the class of $c+\widetilde{c}$ does not depend on the choice of c and \widetilde{c} , i.e. we can define without any ambiguity

$$\alpha + \widetilde{\alpha} = [c + \widetilde{c}] \in \pi_1(X, x_0)$$

 $\underline{\pi_1(X,x_0)}$, together with this addition, is called the <u>fundamental</u>