also have $f_0 \circ g \sim f_1 \circ g : X' \rightarrow Y$ and $h \circ f_0 \sim h \circ f_1 : X \rightarrow Y'$.

 $\underline{\text{Exercise:}}$ Any two continuous maps from a topological space X into Euclidean space \mathbb{R}^n are homotopic.

K. Homotopy equivalence

<u>Definition:</u> Two topological spaces X and Y are called <u>homotopy</u> equivalent if 3 continuous maps

 $f : X \to Y \qquad \text{and} \qquad g : Y \to X$ such that $j \circ f \sim \text{Id}_X : X \to X \quad \text{and} \quad f \circ g \sim \text{Id}_Y : Y \to Y.$

Whereas homotopy is an equivalence relation between continuous $\underline{\text{maps}}$ (see $\underline{\text{J.}}$), homotopy equivalence is an equivalence relation $\underline{\text{between topological spaces.}}$ We use the same notation for homotopy equivalence ("X ~ Y") and have:

- (i) \forall X topological spaces X \sim X
- (ii) \forall X, Y topological spaces (X \sim Y \rightarrow Y \sim X)
- (iii) \forall X, Y, Z topological spaces (X \sim Y and Y \sim Z \rightarrow X \sim Z) It is clear that homeomorphic spaces are homotopy equivalent.

Problems:

1). Establish homotopy equivalences:

$$\mathbb{R}^n \sim \mathbb{E}^n \sim \{\text{point}\} \text{ for } n \geq 1$$
.

2). Prove: $\mathbb{R}^{n} - \{0\} \sim S^{n-1}$

relation than homeomorphy.

3). The cylinder $S^1 \times I$ is homotopy equivalent to the möbius strip.

Remark (without proof): None of the homotopy equivalent spaces in the problems 1)., 2). and 3). above are actually homeomorphic.

This stresses the fact that homotopy equivalence is a much rougher