P^n is obtained by "identifying antipodical points" on the sphere S^n . P^n also can be interpreted as the space of lines in \mathbb{R}^{n+1} which go through the origin. Show that P^n is an n-dimensional manifold. How does P^1 look like? How P^2 ?

- 5). Show that the "cross" $\{(x,y) \in \mathbb{R}^2 \mid x,y \in (-1,1); x \text{ or } y = 0\}$ is not a manifold.
- 6). Let M be a manifold; $x_0, x_1 \in M$, $x_0 \neq x_1$; construct a continuous function $f: M \to \mathbb{R}$ with $f(x_0) = 0$ and $f(x_1) = 1$.

Manifolds are the central objects of study in topology.

J. Homotopy between maps

<u>Definition:</u> Let x,y be topological spaces, and $f_0, f_1 : X \to Y$ continuous maps.

 f_0 and f_1 are called homotopic (and written I]

" $f_0 \sim f_1$ ") if there is a continuous map

 $F: X \times I \rightarrow Y$ s.t. $\forall x \in X$ $F(x,0) = f_0(x)$ and $F(x,1) = f_1(x)$. (Such a map F is called a homotopy between f_0 and f_1).

- \blacktriangleright : The notion of homotopy between maps gives an equivalence relation, i.e. for continuous maps $f, f_0, f_1, f_2 : X \rightarrow Y$ we have
 - (i) f ~ f (reflexivity)
 - (ii) $f_0 \sim f_1 \rightarrow f_1 \sim f_0$ (symmetry)
 - (iii) $f_0 \sim f_1$ and $f_1 \sim f_2 \rightarrow f_0 \sim f_2$ (transitivity)

Lemma: Let X,X',Y,Y' be topological spaces and $f_0,f_1:X\to Y,$ $g:X'\to X$, $h:Y\to Y'$ continuous maps. Then if $f_0\sim f_1$, we