I. Manifolds

<u>Definition:</u> An n-dimensional manifold is a Hausdorff space X such that each point $x_0 \in X$ has a neighborhood in X which is homeomorphic to an open subset of \mathbb{R}^n . A two-dimensional manifold is called a <u>surface</u>.

Examples:

- (i) All open subsets of \mathbb{R}^n are n-dimensional manifolds.
- (ii) S^n is a compact,n-dimensional manifold. (This follows easily from Problem 3). (iii) in § <u>H.</u>). In particular the circle S^1 is a one-dimensional manifold and the sphere S^2 is a surface.

Problems:

- 1). Show that the torus $T^2 \cong S^1 \times S^1$ is a surface. More generally, show that the product of two manifolds is again a manifold. What relation is there between the dimensions?
- 2). Show that the ellipsoid $\{(x,y,z) \in \mathbb{R}^3 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \}$ (where a,b,c > 0 are fixed real numbers) is a surface homeomorphic to S². Draw a sketch.
- { $(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 z = 0$ } is a surface. Is it homeomorphic to any of the topological

spaces you are supposed to know well? Draw a sketch.

4). Introduce on S^n the following equivalence relation: for $x,y \in S^n$ $x \sim y <-> x = y$ or x = -y. The set P^n of equivalence classes $\{x,-x\}$ is given the quotient topology with respect to the map

$$p : S^n \to P^n$$

$$x \to \{x, -x\}$$

3). Show that the paraboloid