is open <--> \forall $x_o \in U \exists \varepsilon > 0$ such that \forall $x \in \mathbb{R}^n$ with $d(x,x_o) < \varepsilon$ we have $x \in U$ (i.e. with each $x_o \in U$ U also contains a whole ball around x_o). Similarly we can define the cubic norm ||| on \mathbb{R}^n by

$$||| x ||| = \max_{1 \le i \le n} \{|x_i|\}$$
 for $x = (x_1, ..., x_n) \in \mathbb{R}^n$.

This norm also satisfies the norm axioms above, and gives rise to the cubic metric $\widetilde{\mathbf{d}}$ defined by

$$\widetilde{d}(x,y) = |||x - y||| \quad \text{for } x,y \in \mathbb{R}^n$$
.

 $\widetilde{\mathbf{d}}$ has the properties (i), (ii) and (iii) of a metric, and hence defines also a topology on \mathbb{R}^n .

Proposition: The three topologies on \mathbb{R}^n introduced so far (i.e. 1.) the metric topology given by d, 2.) the metric topology given by \widetilde{d} , 3.) the product topology) coincide. Thus in particular a map $f: X \to \mathbb{R}^n$ from a topological space $x \to f(x) = y = (y_1, \dots, y_n)$ X into \mathbb{R}^n is continuous iff the component functions

$$\pi_{i}$$
 · f : X → \mathbb{R} are continuous for all $i \le n$. $x \to y_{i}$

Lemma. The following maps are continuous:

1.) add:
$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

$$(x, y) \to x + y$$

2.) mult:
$$\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

$$(\lambda, x) \to \lambda \cdot x$$

3.) inv:
$$\mathbb{R} - \{0\} \rightarrow \mathbb{R}$$

$$\lambda \rightarrow \frac{1}{\lambda}$$