+1, and there exists a unique angle α , 0 \leq α \leq π , such that

$$\cos \alpha = \frac{(x,y)}{\|x\| \cdot \|y\|},$$

We call α "the angle between x and y". If $\alpha = \frac{\pi}{2} = 90^{\circ}$, i.e. if (x,y) = 0, we say x and y are orthogonal (or perpendicular) to one another and write x 1 y.

Example:

 $\mathbb{R}^1 = \mathbb{R} = \text{real line}$

 \mathbb{R}^2 = plane described in terms of cartesian coordinates

 \mathbb{R}^3 = three-dimensional space of cartesian coordinates . Check that in these cases our definition of the angle between x and y coincides with the usual definition of the angle between the vector from the origin to x and the vector from the origin to y. Similarly || x || is just the usual distance of x from the origin.

In \mathbb{R}^n the norm || || satisfies the following "norm axioms":

- (i) $\forall x \in \mathbb{R} ||x|| \ge 0$; and $||x|| = 0 \iff x = 0$
- (ii) $\forall \lambda \in \mathbb{R}$ and $\forall x \in \mathbb{R}^{n} ||\lambda x|| = |\lambda| \cdot ||x||$
- (iii) $\forall x \in \mathbb{R}^n$ and $\forall y \in \mathbb{R}^n ||x+y|| \le ||x|| + ||y||$ (triangle inequality)

From this it is clear that the "distance function" or "metric" α , defined by (for x,y $\in \mathbb{R}^n$)

$$d(x,y) = ||x - y|| \in \mathbb{R}$$

has the usual properties of a metric $(x,y,z \in \mathbb{R}^n)$:

- (i) $d(x,y) \ge 0$; and $d(x,y) = 0 \iff x = y$
- (ii) d(x,y) = d(y,x) ("symmetry")
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ ("triangular inequality"). This metric d defines a topology on \mathbb{R}^n : a subset U of \mathbb{R}^n