in X. This defines a topology on Y, called the quotient topology of Y (with respect to the map f).

Problem: Prove the following lemma.

 $f: f: X \to Y$ is continuous; and a map $g: Y \to Z$ is continuous. tinuous $\longleftrightarrow g \circ f: X \to Z$ is continuous.

Example: Let X be a topological space, and $A \subset X$ a subset. Let Y be the set obtained by collapsing A into a point, i.e. Y consists of $\{A\}$ (which forms a single point in Y) and of the points of X - A. Let $f: X \to Y$ be the map which leaves the points in X - A unchanged and which maps each point $X \in A$ into the point $\{A\} \in Y$. Then Y with the quotient topology is denoted by X/A.

F. Euclidean space

Throughout this section n is a natural number. We denote by $\mathbb{R}^n = \{(x_1, \dots, x_n) \mid \bigvee_{i \leq n} x_i \in \mathbb{R}\}$ the set of all ordered sequences of n real numbers. In \mathbb{R}^n

we have an addition, a multiplication with real numbers and a scalar product: if $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$ are points in \mathbb{R}^n and $\lambda\in\mathbb{R}$, we define:

We have the following "Schwarz inequality":

$$|(x,y)| \le ||x|| \cdot ||y||$$

Therefore, if $x,y \in \mathbb{R}^n$ -{0}, $\frac{(x,y)}{||x|| \cdot ||y||}$ lies between -1 and