- at $x_0 \in X$ in terms of ϵ and δ ?
- 2) Define a function $f:(0,1)\to\mathbb{R}$ in the following way: for irrational $x\in(0,1)$ put f(x)=0; and for rational $x\in(0,1)$, write x in the form $x=\frac{p}{q}$ (with p,q relatively prime natural numbers), and put $f(x)=\frac{1}{q}$. Determine all the points $x_0\in(0,1)$ at which f is continuous.

<u>C.</u> <u>Subspaces</u>

Let A be a subset of a topological space Y.

<u>Def.:</u> A set U in A is called <u>open in A</u> <-> \exists V open in Y such that $U = V \cap A$.

The open subsets in A form a topology of A, the "subspace topology" of "induced topology". Henceforth all subsets of topological spaces are considered as topological spaces with the induced topology.

* : The inclusion map i : A \hookrightarrow Y (with i(y) = Y) is continuous; furthermore a map f : X \rightarrow A from a topological space X into A is continuous iff i \circ f : X \rightarrow Y is continuous.

Problem:

- 1) Which of the following is true:
 - (i) each subspace of a Hausdorff space is Hausdorff?
 - (ii) " " " compact " " compact?
 - (iii) " " " metric " " metric?
 - (iv) " " " connected " " connected?

Def.: If $f: X \to Y$ is a map, and $U \subset X$, then the <u>restriction</u>

of f to U is denoted by $f|U: U \to Y$ (and defined by f|U(x) = f(x) for all $x \in U$).

Problems:

2) Let X,Y be topological spaces, $f:X \to Y$ a map,