Introductory Topology

- A. Definition: A topological space is a set X together with a collection of "open" subsets of X, such that
 - (i) $S \in \mathcal{O}$, $\emptyset \in \mathcal{O}$
 - (ii) any union of open subsets of X is also open
 - (iii) any finite intersection of open subsets is open $(\text{the collection } \textbf{\textit{C}} \text{ is called the } \underline{\text{topology}} \text{ of } X).$ If X is a topological space and $x_o \in X$, then any open subset of X which contains x_o is called a $\underline{\text{neighborhood}}$ of x_o in X.

B. Continuity

Let X,Y be topological spaces and $f:X \to Y$ a map.

- Def.: (i) f is continuous at $x_0 \in X \iff \forall$ neighborhood V of $f(x_0)$ in Y \exists a neighborhood U of x_0 in X such that $f(U) \subset V$.
 - (ii) f : X \rightarrow Y is continuous <--> \forall $x_0 \in X$ f is continuous at x_0 .
- $f: X \to Y$ is continuous <-> the inverse image of each open subset of Y is open in X <-> the inverse image of each closed subset of Y is closed in X.
- F: If $f: X \to Y$ and $g: Y \to Z$ are continuous maps (X,Y,Z topological spaces), then $g \circ f: X \to Z$ is continuous.

Problems:

1) In the special case that X and Y are metric spaces, how can one express the continuity of a map $f: X \to Y$