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Non-existence of Siegel modular forms of weight one

For any natural number N , we denote by Γ0(N) the congruence subgroup of
Sp(2,Z) defined by

Γ0(N) =

{(
A B
NC D

)
∈ Sp(2,Z);A,B,C,D ∈M2(Z)

}
.

The purpose of this appendix is to prove

Theorem 1. For any natural number N , we have S1(Γ0(N)) = 0.

The proof of this theorem is given by using results on Jacobi forms of
degree one, so we explain this first.

Let J1,m(l) denote the space of Jacobi forms of index m on Γ0(l) n Z2.
We shall prove the following theorem in the next section.

Theorem 2. Let m, l1, l2 be positive integers such that l1|m∞ and l2 is
relatively prime to m. Then J1,m(l1l2) = J1,m(l1).

In [Sko, Satz 6.1] it was proven that J1,m(1) = 0 for all m. Thus, the
above theorem has an immediate consequence.

Corollary 1. J1,m(l) = 0 for all l and m which are relatively prime.

Now, admitting this theorem for a while, we give a proof of Theorem 1.
The proof relies on two easy observations. Take F ∈ S1(Γ0(N)) and write
the Fourier expansion as

F (Z) =
∑

T∈L∗+

a(T )e(tr(TZ))

where T runs over the set L∗+ of all half-integral positive definite symmetric

matrices and e(x) = e2πix. For T =

(
n r/2
r/2 m

)
∈ L∗+, we denote by cont(T )

the greatest common divisor of m, n, r. We first show
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Lemma 1. Notations being as above, we have a(T ) = 0 if (cont(T ), N) = 1.

Proof. For a variable Z in the Siegel upper half space H2 of degree two, we

write Z =

(
τ z
z ω

)
. We put

fm(τ, z) =
∑

n,r∈Z,
4nm−r2>0

a

(
n r/2
r/2 m

)
e(nτ + rz).

Then F (Z) =
∑∞

m=1 fm(τ, z) e(mω) gives the Fourier-Jacobi expansion of F
and fm(τ, z) ∈ J1,m(Γ0(N)). By Corollary 1, we have fm = 0 if m is prime
to N . Hence we have a(T ) = 0 if the (2,2)-component of T is prime to
N . Now there exists an integral vector v ∈ Z2 such that tvTv/ cont(T ) is
prime to N . (This is classically well known and easy to see. For example
see [Zagier].) This implies that there exists U ∈ GL2(Z) such that the (2, 2)
component of tUTU/ cont(T ) is prime to N . By the automorphic property
of F , we have F (UZtU) = det(U)F (Z) for any U ∈ GL2(Z). This implies
that a(tUTU) = det(U)a(T ) for any U ∈ GL2(Z). Hence we have a(T ) = 0
if cont(T ) is coprime to N and we have proven the lemma.

Secondly, we use standard Hecke operators at bad primes. Let m be any
natural number such that if p|m then p|N . We put

U(m) = Γ0(N)

(
12 0
0 m12

)
Γ0(N),

where 12 is the unit matrix of size two. Then we have

U(m) =
∐
S

Γ0(N)

(
12 S
0 m12

)
where S runs over a complete set of representatives of integral symmetric
matrices module m. This is easily shown as follows. We may assume that
N 6= 1. We put

Γ0(N,m) = Γ0(N) ∩
(

12 0
0 m12

)−1

Γ0(N)

(
12 0
0 m12

)
,

i.e.

Γ0(N,m) =

{(
A B
NC D

)
∈ Γ0(N) : B ≡ 0 mod m.

}
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For any γ =

(
A B
NC D

)
∈ Γ0(N), we have AtD − NBtC = 12 so det(A) is

prime to N and also to m. Since A−1B is symmetric, there exists an integral
symmetric matrix S such that AS +B ≡ 0 mod m. Hence we have

γ ∈ Γ0(N,m)

(
12 S
0 12

)
.

Hence the coset decomposition of U(m) is given as above.
Now we can define an action of U(m) on S1(Γ0(N)) by

F |U(m) = m−3
∑

S= tS∈M2(Z/mZ)

F ((Z + S)/m) =
∑

T∈L∗+

a(mT )e(tr(TZ)).

Since this is the usual action in the theory of Hecke operators, we see
F |U(m) ∈ S1(Γ0(N)). Now for a fixed T , take a natural number m such that
m|N∞ and cont(T/m) is coprime toN . Put T0 = T/m. Then a(T ) = a(mT0)
is the coefficient of F |U(m) at T0. But cont(T0) is coprime to N . Hence we
have a(T ) = 0 by Lemma 1. So all the coefficients of F vanish and hence
F = 0. Thus we have proven Theorem 1.

Jacobi forms of weight one on Γ0(l)

The proof of Theorem 2 relies on the explicit description of the irreducible
components of the (projective) SL(2,Z)-module of modular forms of weight 1

2

on all principal congruence subgroups Γ(4m). This was given in
[Sko, Satz 5.2] based on the theorem of Serre-Stark [Ser-Sta] that there are
no modular forms of weight 1

2
on any Γ0(l) except for theta series.

The proof of the Theorem 2 yields actually a formula for the dimension
of the spaces Jk,m(l) for arbitrary l and m, which, for given instances of l
and m, can be explicitly evaluated. However, putting this formula in a more
explicit form would require a deeper understanding of the rings of virtual
characters of the groups SL(2,Zp). We hope to come back to this in another
place.

Though it is very likely that the assumption on l, m is not best possible, it
is in any case not superfluous. In fact, there exists Jacobi forms of weight 1.
For instance, it is not difficult to show that∑

x,y∈Z

(
2x+ y

7

)
qx2+xy+2y2

ζ7y ∈ J1,7(49).
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A more detailed treatment of the representation theory of SL(2,Z) used
in the proof of Theorem 2 will be given in a broader context in [Sko2].

Proof of Theorem 2. Let θm,ρ =
∑

r≡ρ mod 2m q
r2/4mζr, let Thm the vector

space spanned by the θm,ρ (0 ≤ ρ < 2m), and let M1/2 =
∑

m≥1M1/2(Γ(4m))

the space spanned by all modular forms of weight 1
2

which are invariant under
some principal congruence subgroup Γ(4m). The spaces Thm and M1/2 are
M(2,Z)-right modules. Here M(2,Z) denotes the usual metaplectic double
cover of SL(2,Z), i.e. the group of all pairs (A, v), where A = [a, b; c, d] is in
SL(2,Z) and v is a holomorphic function on the complex upper half plane
satisfying v2(τ) = cτ + d, the product of two such pairs being defined by
(A, v)(B,w) = (AB, v(Bτ)w(τ)). The action on elements θ ∈ Thm is given
by θ|(A, v)(τ, z) = θ(Aτ, z/(cτ + d)) exp(−2πimcz2/(cτ + d))/v(τ), and the
action on functions h ∈ M1/2 is defined by h|(A, v)(τ) = h(Aτ)/v(τ). Note
that the transformation law for the functions h ∈ M1/2 reads h|α = h for
all α ∈ Γ(4m)∗, where Γ(4m)∗ is the subgroup of all pairs (A, j(A, τ)) in
M(2,Z) with j(A, τ) = θ(Aτ)/θ(τ) and with θ =

∑
r∈Z q

r2
. It is not hard to

show that Γ(4m)∗ is a normal subgroup of M(2,Z). The group Γ(4m)∗ acts
trivially on Thm, i.e. the action of M(2,Z) on Thm factors through an action
of the finite group M(2,Z)/Γ(4m)∗ [Sko, Lemma 1.2]

For every subgroup Γ of finite index in SL(2,Z) the map h ⊗ θ 7→ hθ
induces an isomorphism

(M 1
2
⊗ Thm)Γ → J1,m(Γ).

Here the space on the left is the subspace of all elements in the M(2,Z)-
module M1/2 ⊗ Thm which are invariant under Γ. Note that the action on
this tensor product factors through an action on SL(2,Z). We shall use this
tacitly in the following. In particular, it makes sense to consider Γ-invariant
elements.

For a more detailed exposition of the facts described in the two preceding
paragraphs we refer the reader to [Sko-Zag, §0].

For a nonnegative integer d, the application Ud : θ(τ, z) 7→ θ(τ, dz) defines
a M(2,Z)-equivariant map Thm → Thmd2 if d ≥ 1 and Thm →M1/2(Γ(4m))
if d = 0. There is exactly one M(2,Z)-invariant complement C of the sum of
the spaces Thm/d2 (d2|m, d > 1) in Thm. For a square free divisor f of m, de-
note by Thf

m the subspace of all θ ∈ C such that θ|α =
(

4m
a

)
µ(gcd(f, a+1

2
))θ

for all α = (A, j(A, τ)) in M(2,Z) with A ≡ [a, 0; 0, a] mod 4m, where µ is
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the Moebius function. The space Thf
m is an irreducible M(2,Z)-module [Sko,

Satz 1.8]. The decomposition of Thm and M1/2 into irreducible M(2,Z)-
modules can now be described in terms of the Thf

m as follows [Sko, Satz 1.8,
Satz 5.2]:

Thm =
⊕
fd2|m

Thf
m/d2|Ud, M 1

2
=

⊕
g|n, µ(g)=1

Thg
n|U0.

Here the first sum is over all pairs of positive integers f , d with square free
f such that fd2|m, the second one runs over all positive integers g, n with
µ(g) = 1 such that g|n. It is easily checked that Thg

n|U0 is isomorphic to Thg
n

as M(2,Z)-module if µ(g) = 1 and reduces to 0 otherwise.
Let θf

m denote the character of the M(2,Z)-module Thf
m. We deduce from

the preceding discussion that

dim J1,m(Γ) =
∑

f,d,g,n
fd2|m, g|n, µ(g)=1

〈1Γ,ResΓ θ
f
m/d2 θ

g
n〉.

Here, for characters χ, ψ of representations of a group G we use 〈χ, ψ〉 for
the Z-bilinear form on the ring of virtual characters which, for irreducible
χ, ψ, equals 1 or 0 accordingly as χ = ψ or not. This make sense if G
is a finite group as well as for characters of representations of subgroups
of SL(2,Z) whose kernel contains some normal subgroup of finite index in
SL(2,Z). We remark that it is not difficult to show that in the last formula
for the dimension of Jk,m(Γ) the terms with µ(f) = +1 vanish if −1 ∈ Γ.
However, we shall not make use of this. Clearly, since the dimension of
J1,m(Γ) is finite there are only finitely many n in the dimension formula with

multiplicity 〈1Γ,ResΓ θ
f
m/d2 θ

g
n〉 different from 0.

To study these multiplicities we decompose them into local components.
More precisely, we note that, for each m, the natural map

M(2,Z)/Γ(4m)∗ → M(2,Z)/Γ(4m2)
∗ ×

∏
p|m, p6=2

SL(2,Z)/Γ(mp)

is an isomorphism. Here, for a prime p, we use mp for the exact power of
p dividing m. Accordingly every irreducible character χ of a representation
of M(2,Z) which is trivial on some Γ(4m)∗ admits a unique factorization
χ =

∏
p χp with irreducible characters χp each of which is the character of

a representation of M(2,Z) respectively SL(2,Z) which is trivial on Γ(4m2)
∗
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respectively Γ(mp) accordingly as p = 2 or p > 2. More generally, a cor-
responding factorization holds true for characters of representations of sub-
groups of M(2,Z) which are trivial on some Γ(4m)∗.

If Γ is a congruence subgroup we can therefore write

〈1Γ,ResΓ θ
f
m θ

g
n〉 =

∏
p

〈1Γp ,ResΓp(θ
f
m)p (θg

n)p〉.

Here Γp is the inverse image of the reduction of Γ module sufficiently big pow-
ers of p. Using Frobenius reciprocity we can constrain ourself to characters
of SL(2,Z). Namely, for each p, we have

〈1Γp ,ResΓp(θ
f
m)p (θg

n)p〉 = 〈Ind
SL(2,Z)
Γp

1|Γp , (θ
f
m)p (θg

n)p〉.

We now consider the case Γ = Γ0(l). Then Γp = Γ0(p
λ) where pλ||l.

The decomposition of the trivial character of Γ0(p
λ) induced to SL(2,Z) into

irreducible characters is given by

Ind
SL(2,Z)

Γ0(pλ)
1 = ψpλ + ψpλ−1 + · · ·+ 1, ψpλ = Ind

SL(2,Z)

Γ0(pλ)
1− Ind

SL(2,Z)

Γ0(pλ−1)
1.

Indeed, if we realize Ind
SL(2,Z)

Γ0(pk)
1 by C[Γ0(p

k)\ SL(2,Z)], considered as SL(2,Z)

module via multiplication from the right, then ψpk is the character of the
kernel of the natural map

C[Γ0(p
k)\ SL(2,Z)] → C[Γ0(p

k−1)\ SL(2,Z)].

In particular, it is a proper character. Moreover,the number of irreducible
components of C[Γ0(p

λ)\ SL(2,Z)] is, by Frobenius reciprocity, bounded to
above by the dimension of the subspace of Γ0(p

λ)-invariant elements in the
space C[Γ0(p

λ)\ SL(2,Z)], which in turn equals the number of double cosets
Γ0(p

λ)\ SL(2,Z)/Γ0(p
λ). But the latter is in fact equal to λ + 1 as may

be easily verified by identifying Γ0(l)\ SL(2,Z) with the projective line over
Z/pλZ and considering the natural right action ([x : y], A) 7→ [(x, y)A] of
Γ0(l) on it.

Note that from the very definition the character ψpλ takes on rational
values only.

To investigate further our formula for the dimension for J1,m(l) we have
now to consider for each prime p the multiplicity

I = 〈ψpλ , (θf
m)p (θg

n)p〉.
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Assume that p is not a divisor of m. We show that the last multiplicity
equals 0 if p divides n.

Indeed, if p 6= 2, then (θf
m)p = 1 and hence I is different from 0 only

if ψpλ = (θg
n)p (since both characters are irreducible). But the latter is

possible only if both characters are trivial, i.e. if p does not divide n (and
λ = 0). Namely, if p|n then (θg

n)p takes on non-rational values whereas ψpλ is
a rational character as we saw above. To prove the non-rationality of (θg

n)p

note that T ′ = ([1, 1; 0, 1], 1) assumes on Thm the eigenvalues exp(2πiρ2/4n)
(0 ≤ ρ < 2n). It follows that T = [1, 1; 0, 1] assumes in a representation r
with character (θg

n)p only eigenvalues of the form exp(2πihσ2/np) for certain
integers σ and with a suitable h (independent of σ and relatively prime to p).
Here np is the largest power of p dividing n. In [Sko, Proof of Satz 1.8 (iv)] it
was proven that 1 occurs among the σ. But then the traces (θg

n)p(T
n) cannot

be invariant under G = Gal(Q/Q) for all n since otherwise the characteris-
tic polynomial χ(X) = det (X − r(T )) would have rational coefficients (note
that Xdim rχ(1/X) = exp

(
−

∑
n≥1 tr r(T n)Xn/n

)
), whence the set of eigen-

values of r(T ) would contain simultaneously with exp(2πih/np) all primitive
np-th roots of unity.

A similar argument works for p = 2. Here we have (θf
m)2 6= 1. However,

T ′ assumes in a representation with character (θf
m)2 only the two eigenval-

ues 1 and exp(2πih/4) for some odd h. Moreover, the eigenvalues of T ′ in
a representation of (θg

n)2 are of the form exp(2πikρ2/4n2) for suitable ρ in-
cluding ρ = 1 and some odd k (independent of ρ). It follows that the set
of eigenvalues of T in a representation with character (θf

m)2 (θg
n)2 does not

contain all primitive 4n2-th roots unity if n2 > 1. As above we deduce from
this that, for n2 > 1, the traces (θf

m)2 (θg
n)2(T

n) cannot all be rational.
We conclude that 〈1Γ0(l),ResΓ θ

f
m θ

g
n〉 = 0 unless l2, the part of l which

is relatively prime to m, is also relatively prime to n. But if l2 is relatively
prime to n then

〈1Γ0(l),ResΓ θ
f
m θ

g
n〉 = 〈1Γ0(l1),ResΓ θ

f
m θ

g
n〉.

Indeed, let φ ∈ Thg
n|U0 ⊗ Thf

m be invariant under Γ0(l), and let A ∈ Γ0(l1).
Choose A′ ∈ SL(2,Z) such that A ≡ A′ mod N where N is a common mul-
tiple of 4m, 4n, l1 relatively prime to l2, and such that A′ ∈ Γ0(l2). Then
φ|A = φ|A′ (since Γ(N)∗ acts trivially on Th0

n|U0 and Thm) and φ|A′ = φ
(since A′ ∈ Γ0(l1) ∩ Γ0(l2) = Γ0(l)). Thus φ is invariant under Γ0(l1).

The theorem follows now immediately.
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