Spring-School RWTH Aachen 2008
Mathematik mit SAGE

Wir wollen uns in den Umgang mit SAGE einarbeiten, indem wir, in die
nachstehend aufgefithrten Gruppen aufgeteilt, das jeweils beschriebene Pro-
jekt bearbeiten. Hierzu ist es notwendig, dass die Teilnehmer sich soweit als
moglich schon vorab mit den fiir das Projekt notwendigen mathematischen
Begriffen und der eigentlichen Problemstellung vertraut machen. Sie finden
zu Threm Projekt jeweils eine Liste der Literatur, mit der Sie sich vor Beginn
der Spring School auseinandersetzen sollten. Wir haben versucht, diese Liste
moglichst kurz zu halten; dennoch werden Sie sicherlich je nach Vorbildung
noch zusétzlich einige Begriffe selbsténdig erarbeiten miissen. Bei Threr Pro-
jektbeschreibung finden Sie eine Liste derjenigen mathematischen Begriffe,
die Sie zu Beginn der Veranstaltung in jedem Fall nachgelesen haben sollten.

Die zweite Schwierigkeit, die es zu meistern gilt, ist das Erlernen von Py-
thon und SAGE. Zwar werden wir uns beim ersten Treffen hiermit beschéfti-
gen, jedoch wird die 90-miniitige Einfiihrung natiirlich nicht wirklich ausrei-
chen, um Sie zu einem Experten zu machen. Daher ist es wichtig, dass Sie
auch schon vorab etwas in der Dokumentation zu Python [Python| und zu
SAGE [SAGE] querlesen. Falls Sie Python zur Verfiigung haben (oder sich
zutrauen, es selbststdndig zu installieren), so sollten Sie damit auch schon
etwas experimentieren.

Links

[Python| http://www.python.org/doc/current /tut /tut.html
[SAGE] http://www.sagemath.org/documentation.html



Projekt I: Kegelschnitte

Teilnehmer

Jan HACKFELD, Margarete TENHAAK, Philipp TENHAAK

Projektbeschreibung

Sei K ein Korper und F' eine symmetrische 3z3-Matrix tiber K mit det(F') #
0, sei

CS = {[x:y:z] ; (m,y,z)F(g) :0}

der zugeordnete projektive Kegelschnitt iiber dem Kérper K. Wir nehmen
an, dass C'S nicht leer ist. Sei N ein Punkt auf C'S und g eine fest vorgegeben
Gerade, die N nicht enthélt, und sei C'Sy die Menge, die entsteht, wenn man
aus C'S die Schnittpunkte von g mit C'S entfernt. Wir definieren die Summe
zweier Punkte A und B von C'S; folgendermassen: Sei g4 p die Gerade durch
A und B (die Tangente an C'S durch A, falls A = B), sei S der Schnittpunkt
von g4 p mit g, sei gy g die Gerade durch N und S, und sei schliellich C' der
zweite Schnittpunkt von gy ¢ mit C'S (und C' = N, falls gy ¢ Tangente an C'S
ist). Wir setzen A+ B := C. Hierdurch wird tatséchlich eine Gruppenstruktur
auf C'Sy erklart.

Wir wollen diese Gruppen in SAGE implementieren, indem wir etwa zwei
Klassen CSGroup und CSGroupElement entwerfen.

Sofern Zeit bleibt, konnen wir ggf. noch einen Algorithmus implementie-
ren, der zu vorgegebenem Kegelschnitt iiber einem Primkérper priift, ob er
einen Punkt enthélt, und falls ja, einen solchen berechnet (Anwendung des
Satzes von Legendre).

Vorbereitung

Lesen Sie Seite 1 bis 20 in [1], und versuchen Sie den etwas abstrakten Text
zu verstehen. Uberfliegen Sie anschlieBend im gleichen Buch die einschligigen
Stellen zu Kegelschnitten (Conics) — Sie werden moglicherweise vieles davon
nicht vollstindig verstehen, ein Blick wird dennoch niitzlich sein. Blattern Sie
durch den Artikel [2]: lassen Sie sich nicht entmutigen, das meiste Vokubaluar
wir Thnen unbekannt sein. Wenn wir wéhred der Veranstaltung gemeinsam
in [2] etwas ansehen, wird es Ihnen helfen, sich dort zumindest schon einmal



grob orientiert zu haben. Uberlegen Sie, welche Berechnungen zur Losung
der Projektaufgabe notwendig sind.

Falls Thnen Samuel zu abstrakt ist, so koennen Sie vielleicht in der Biblio-
thek [3] ausleihen; das letzte Kapitel (ab der 2. Auflage) betrifft die projektive
Geometrie.

Begriffe

Projektive Ebene iiber einem beliebigen Korper, homogene Koordinaten, ebe-
ne algebraische Kurve, Kegelschnitt (conic section), Formeln aus der analy-
tischen Geometrie fiir den Schnittpunkt zweier projektiver Geraden, fiir die
projektive Gerade durch zwei Punkte.

Literatur

1 Pierre Samuel, Projective Geometry. Springer 1988

2 Franz Lemmermeyer, Conics — A Poor man’s Elliptic Curves, preprint
2003

3 M. Koecher, A. Krieg: Ebene Geometrie, Springer-Verlag 1993



Projekt II: Untergruppen von SL(2,7Z)

Teilnehmer

Hatice BOYLAN, Judith KREUZER, Dominic STEFFEN GEHRE

Projektbeschreibung

Die Modulgruppe I' = SL(2, Z) ist endlich erzeugt. Als Erzeugende kann man
etwa die Matrizen 7' := (1) und S := ({ ' ) nehmen. Nach einem allgemei-
nen (und leicht einzusehenden Satz, vgl. [1], Satz 4.1) besitzt die Gruppe I'
fiir jede natiirliche Zahl n nur endlich viele Untergruppen mit Index n. Die-
se enthilt man im Wesentlichen, indem man alle Gruppenhomomorphismen
' — S, auflistet, wo n die symmetrischen Gruppe von n Elementen bedeutet.
Hierzu wiederum bendétigt man den Satz, dass I' isomorph zum Quotienten
der freien Gruppe mit zwei Erzeugenden s und ¢ nach dem von den Relatio-
nen s? = (st)® und s* = 1 erzeugten Normalteiler ist.

Wir wollen eine Funktion findSubgroups( n) entwerfen, die alle Unter-
gruppen vom Index n in I" ausgibt, und eine Klasse Subroup0fModularGroup,
deren Instanzen mittels eines Gruppenhomomorphismus I' — S, initiali-
siert werden. Methoden dieser Klasse sind etwa: isCongruenceSubgroup (),
genus (), nEllipticFixedPoints() etc.

Vorbereitung

Lesen Sie die ersten Abschnitte in [2], die sich mit I' = SL(2, Z) beschéftigen.
Schauen Sie sich insbesondere die Satze 1.2.4, 1.2.5 an. Sehen Sie sich den
Satz 4.1 in [1] an; der Beweis dieses Satzes ist der Schliissel zur Losung der
gestellten Aufgabe.

Begriffe

[' := SL(2,Z), Prisentation einer Gruppe mittels Erzeugender und Relatio-
nen, Présentation von I' (vgl. [2], Theorem 1.2.5, nach diesem Satz ist I’
isomorph zur freien Gruppe in den Erzeugenden v und v, dividiert durch die
Relationen v? = (vu)3, v* = 1), Operation von T' auf der oberen komplexen
Halbebene, Klassifikation der Fixpunkte unter dieser Operation, Untergrup-



pen von I', Kongruenzuntergruppen, I'o(N), I'(N), Geschlecht, Index und
Spitzen einer Untergruppe von I'.

Literatur

1 R.C. Lyndon und P.E. Schupp, Combinatorial Group Theory, Sprin-
ger 1977

2 Rankin, Modular Forms. Cambridge University Press, 1977

3 Hsu, Identifying Congruence Subgroups of the Modular Group, Proc.
AMS 124 (1996), 1351-1359



Projekt IIla: Ringe von Modulformen

Teilnehmer

Anna PIPPICH, Anna POSINGIES, Daniel JACOBS

Projektbeschreibung

Wird miindlich vereinbart.
Vorbereitung

Begriffe

Literatur



Projekt IIIb: Ringe von Modulformen

Teilnehmer

Marc ENSENBACH, Michael HENTSCHEL, Martin RAUM

Projektbeschreibung

Wird miindlich vereinbart.

Vorbereitung
Begriffe

Literatur



Projekt IV: Hohen algebraischer Zahlen

Teilnehmer

Till DIECKMANN, Elisabeth PETERNELL, Cornelia WIRTZ

Projektbeschreibung

Die Komplexitét einer algebraischen Zahl wird in der diophantischen Analysis
durch ihre Hohe H(a) gemessen. Die Hohe ist immer > 1, und es ist H («) =1
genau dann, wenn « eine Einheitswurzel ist. Ein Satz von Zhang besagt, Eine
algebraische Zahl kann nicht gleichzeitig nahe bei 0 und bei 1 sein, genauer:

Sind «, # zwei von 0, 1 und %j’ verschiedene algebraische Zahlen und gilt
a+ 3 =1, so folgt
1++/5
H(a)H(B) =

5
mit Gleichheit genau dann, wenn « oder 3 eine primitive 10-te Einheitswurzel
ist. In [1] wird dieser Satz auf algebraische Losungen «, (3 einer beliebigen
iiber Q definierten ebenen Kurve verallgemeinert: Zu jeder solchen Kurve
gibt es eine Konstante C' > 1, sodass fiir jeden (algebraischen) Punkt (o, ()
auf dieser Kurve (bis auf endlich viele Ausnahmen) H(«a)H(3) > C gilt. Die
Konstante kann sogar scharf bestimmt werden und wird von endlich vielen
Losungen angenommen.

Wir wollen eine Funktion findConstant( C) entwerfen, die zu gegebe-
ner ebener Kurve C' iiber Q die optimale Konstante C' fiir die oben geschil-
derte Abschitzung ausgibt. Ggf. werden wir hierzu vorab noch eine Klasse
PlaneAffineAlgebraicCurve entwerfen. Anschliessed werden wir etwas ex-
perimentieren und z.B. die Konstanten C' fiir Kegelschnitte studieren. Viel-
leicht gibt es hier etwas Neues zu entdecken.

Vorbereitung

Erarbeiten Sie sich Theorem 2.1 ([1], S. 32) und die Details des Beweises.
Lesen Sie ggf. vorab den Beweis zum Satz von Zhang ([1], S. 15), um die
Idee des Beweises besser zu verstehen. Versuchen Sie die gestellte Aufgabe
gedanklich in Teilprojekte zu zerlegen.



Begriffe

Algebraische Zahl, affine ebene algebraische Kurve iiber Q (vgl. [1], S. 31],
die Hohe H(«) einer algebraischen Zahl (vgl. [1], S. 10).

Literatur

1 N-P. Skoruppa, Heights, Lecture Notes, Siegen 2003



Pierre Samuel, Projective Geometry.
Springer 1988
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1.1. Projective Spaces and Projective Bases

Consider, in the plane, two non-parallel lines D and D', and a point P
not contained in either line. To each point M of D associate the point
M' = p(M) where the line PM intersects D'

~ Notice that p(M) is not defined when PM is parallel to I)': on the other
Pn.nd, the point A’ where I intersects the parallel to I containing P is not
in the image of p. There’s something “missing” in D and D; the right thing
i - to work with seems to be the set of projecting lines, or lines containing the
L2k . amnht.-'ﬁibtgmﬁﬁ.ipn.' This motivates the following definition: '

Y L 7-ﬁ_":' ¥ 1



2 1. Projective Spaces

In this book the term *field” will include skew fields as well as commutative
ones, except where we indicate otherwise (see index for a list of such sections). If
K is a skew field we assume for concreteness that E is a left vector space over K.

One can also see P(E) as the quotient of the set £\ 0 of non-zero vectors
modulo the equivalence relation “x ~ y if and only if ¥ = ax for some
a € K" (naturally, a # 0). Thus we have a canconical map p: E\0 — P(E)
that associates to each vector x the vector line Kz it spans.

Definition 2. The dimension of P(E) is the integer dim F — 1, which we
denote by dim P(E).

The projective space P(K™*!) is denoted by P,(K); its dimension is n.
Projective spaces of dimension one and two are called projective lines and
planes, respectively.

Notice that P(0) is empty; by definition 2, its dimension is —1. A zero-
dimensional projective space reduces to a point.

Definition 3. A (projective) linear subvariety, or linear subspace, of P(E)
is the image L = p(V) of a vector subspace V of E.

This definition embodies an abuse of notation: to be precise we should write
L =p(V \ 0}

Notice that a projective linear space L = p(V') is the projective space P(V)
associated with V.

An intersection of projective linear spaces is a (possibly empty) projective
linear space. Given a subset A C P(E), there exists a smallest projective
linear space containing A; we call it the projective linear space generated
by A, and denote it (for the time being) by v(A). It corresponds to the
vector subspace spanned by p~'(A4).

Theorem 1. IfL and L' are projective linear spaces in P(E), the following
dimension formula holds:

dim L + dim L' = dim(L n L") + dim(v(L U L"))-
Proof. This is a direct translation, via definition 2, of the well-known

formula for vector subspaces:

dimV + dim V' = dim(V 0 V') + dim(V + V). O

Corollary. If dim L + dim L' > dim P(E), the intersection LN L' is non-
empty.

Proof. In fact, theorem 1 gives dim(L N L) 2 0,

a.nd th-e qgﬂy Wﬂpty
projective linear space has dimension —1. b 2l Lo _

3§
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We say that a subset A C P(FE) is projectively independent if it is the
image under p of a linearly independent subset of E.

Homogeneous coordinates

We assume from now on that E is finite-dimensional.

Given a basis (e, €1,...,¢,) for E, we can associate to each point A €
P(E) certain {n + 1)-tuples of elements of K, namely, the coordinates of
the vectors £ € E such that A = p(z). By definition, these (n + 1)-tuples
are all non-zero (that is, they have at least one non-zero component) and
proportional to one another: if (zg,z1,...,25) is one (n 4+ 1)-tuple, all
others will be of the form (azg, azy,...,azs), where a € K is non-zero.
The set of such (n+ 1)-tuples is called the homogeneous class of A € P(E),
and each representative of this class is a set of homogeneous coordinates for
A. The mapping thus defined from P(E) into the set of projective classes
is called a projeciive coordinate system.

Projective coordinate systems can be characterized intrinsically in terms
of P(E):

Theorem 2. Lel K be commutative.

(a) A projective coordinale system on an n-dimensional projective space
P(E) is uniquely determined by the n +2 pm’nts with hamaymeous co-
ordinafes (1,0,...,0), (0,1,...,0}, ..., (0,0 d1 (1L ). Any
n+ 1 of these points form a projeciively mriependent szt

(b) Conversely, for each (n+2)-tuple (Fy, Py, ..., Pay1) of points in P(E)
all of whose (n+ 1)-subluples are projectively independent, there exists
a projective coordinate system assigning the coordinates (1,0,...,0) to

:00,0,..:;1) to P, and (1,1,...,1) 1o Poyy.

FProof. The n + 1 points Py, ..., P, are not enough to determine the ba-
sis of F from which the projetive coordinate system derives, because if
(€0, €1,...,€n) is such a basis, so is (ageg, are1, . . ., ane,) for any non-zero
ag,. .-, 8n € K. But if both bases assign to F,4; the homogeneous coordi-
nates (1,...,1) we see that P,y is the image of both ey 42, +- - -+ &, and
ageg 4+ ajey +- - - +anen, which implies that all the a; are equal to the same
non-zero scalar a. Thus the two bases are proportional, (ep, €1,...,e,) and
(aeg, aey, ..., ae,).

Now if M € P(E) comes from a point # € E whose coordinates in the
first basis are (zg,Z1,...,2,), the coordinates of z in the second basis will
be (zga=!, z1a~!,...,z,a"1): the two sets of coordinates are proportional
(that is, lefi-proportional) because K is commutative.

To prove part (b), lift Py,..., P, to any basis (ep,...,e,) of E, and
consider the coordinates (bg,...,bs) of a vector u € p~'(P,4;) in this
basis. All the b; are different from zero, so we just change our basis to

(_bucu,m.buen)-. it




4 1. Projective Spaces

Part (b), and the last assertion in part (a), hold even if K is a skew field.

Definition 4. An (n + 2)-tuple (Fo, Pi1,..., Pay1) of points in P(E) is
called a (projective) frame (or projective base) of P(E) if, for some pro-
jective coordinate system, the homogeneous coordinates of Py, ..., P, are
(1,0,...,0), (0,1,...,0), ..., (0,0,...,1), respectively, and those of P,
are (1,...,1). The points Fy, ..., Py are called the vertices, and F,4; the
unit point, of the frame.

Corollary. An (n + 2)-tuple (Fo, Py, ..., Pay1) of points in an n-dimen-
sional projeciive space is a profective frame if and only if any n+ 1 poinis
among them are projectively independent. O

It amounts to the same to say that no (n — 1)-dimensional projective
linear space, or hyperplane, contains n + 1 of these points.

This corollary holds even if K is a skew field.

Examples

(1) A frame for a projective line is formed by any three distinct points
( “pairwise distinct”, as purists would have it).

(2) In a projective plane, a frame is formed by four points, three of which
form a non-degenerate triangle and the fourth of which does not belong

to any of the sides of the triangle. In this way no three points are
collinear.

=0
o
[ P

Homogeneous coordinates can be used to write equations for projective
linear spaces of P(E). Namely, given a basis (€o..- -€a) for the vector
space F, a hyperplane H has equation
{1} zobg 4+ 21by + -+ Tabs =0, with b € K.- _.

3

1. Projective Spaces and Projective Bases 2

which expresses the condition that the point with coordinates (zq,...,x,)
be on H. The same equation (1) also expresses the condition that a point
of P(E) with homogeneous coordinates (zg,...,#n) lies in the projective
hyperplane p( H); notice that any other set (azq, ..., az,) of homogeneous
coordinates for this point also satisfies (1).

As an intersection of hyperplanes, a projective linear space is defined
by a system of homogeneous equations of the form (1). More precisely, if
a projective linear space L has codimension d, that is, if its dimension is
n — d, the space can be defined by a system of d equations whose lefi-hand
sides are linearly independent linear forms.

Notice that in (1), the coefficients are written to the right of the variables. In
fact, if f is a linear form having H as its kernel, we have f(zoeo +-- + Znen) =
zof(eo) + -+ Taflea) =00

If K is commutative, one defines an algebraic subset of E to be any
subset given by a system of polynomial equations

(2] P}(xﬂ:xls'--lzﬂj=u fmj:ls”'rQ1

in some fixed basis of E. A change of basis alters these equations, but not
their property of being polynomial, nor their degrees.

In translating this to the projective case, it's best to assume that the
polynomials F; are homogeneous. Then a system of equations of the form
(2), if satisfied by one set of homogeneous coordinates of a point of P(E)
in a given projective frame, is satisfied by the whole homogeneous class of
the point. The equations are said to define an algebraic subset of P(E).

Cardinality over finite fields

Let K be the field F, with ¢ elements. If P(E) has dimension n, its
characterization as a quotient space of E'\ 0 immediately shows that

=l
=il

Thus a projective line over Fy; has q¢ + 1 points (at least three, since
g = 2), and a projective plane ¢* + g + 1 points.

The number of bases of E is (g"*+! —1)(¢"*t1 —q) - -- (4" ! — ¢™), since we
can start by choosing any non-zero vector, then any vector not proportional
to the first, and so on. Since a projective frame is determined, up to a non-

zero scalar factor, by a basis of E (theorem 2), we conclude that the number
of frames of P(E) is

{4} {qn-i—l 1}{{}”“ u—q] n+1 n—l}gnl

For lines and planes, respectively, the number of frames is g{q® — 1) =
q(g —= 1)(g + 1) and ¢*(¢® — 1)(¢° — ¢) = ¢*(q — 1)*(g + 1)(a* + ¢ + 1).

P(E) has as many d-dimensional projective linear spaces as E has (d+1)-
dimensional vector subspaces. The number of such subspaces is the number

T
(3) #P(E) = 1 =¢"+¢" 4 g+ 1



6 1. Projective Spaces

of sets of d + 1 linearly independent vectors in E, divided by the number
of such sets as span the same subspace. This shows that the number of
d-dimensional projective linear spaces of P(E) is

# T e =) ket ]
. @ - D@ )@ —g)

For g large this number is asymptotically g{d+1Kn—d),
In particular, the number of lines in P(E) is

W i = 1)
(i Mg LE Ty 0

1.2. Projective Transformations and the
Projective Group

Let u be a linear map from a vector space £ into a vector space F. Since u
preserves vector lines, it defines a map between the quotient spaces P(E)
into P(F), as long as non-zero vectors are mapped into non-zero vectors,
that is, u is one-to-one, The map P(u) : P(E) — P(F) thus obtained is
called a projective map, and a projective transformation if it is bijective,
that is, if dim P(E) = dim P(F). Projective transformations are sometimes
called homographies.

When u is not one-to-one we obtain a map defined on the complement of
p(ker(u}).

Given another one-to-one linear map v from F into a third vector space
(7, we can wrile

(6) P(vou) = P(v) o P(u);
we also clea.ﬂ_v have P(Idg} = Idp{EJ,

Theorem 3. Let E and F be vector spaces, with dimE > 2, and let
Z={a€ K |ab=ba for allb € K} be the center of K. Two one-to-one
linear maps u and v’ from E into F salisfy P{u) = P(v’) if and only if
there exists a scalar a € Z such that v'(z) = au(z) for every z € E.

The cases dim E = 0,1 are left to the reader.

Proof. The condition is obviously sufficient, since @ € Z implies that
u — au is linear. Conversely, if P(u) = P(u’), there exists, for every non-
zero ¢ € E, some scalar a(z) such that u'(z) = 4{3]“!:"’]- Taking i and y
linearly independent and expressing u'(z + y) in two ,Wm*ﬁt_ld
a(z) = a(x + y) = a(y). This implies that a(z) =l 2 and y,

_JE

LT o R e T

2. Projective Transformations and the Projective Group T

since we can find z proportional to neither # nor y. There remains to show
that a = a(z) is central.

For any b € K and non-zero z € E, we have u'(bx) = au(bz) = abu(z)
and u'(bx) = bu'(z) = bau(z). Since u(x) # 0, this implies that ab = ba,
showing that a € 2. O

Corollary. A one-to-one linear map of a vector space that transforms each
vector into a multiple of itself is of the form u — au, where a is a central
scalar. O

For K commutative this condition can also be stated in terms of eigenspaces.
A map of the form 4 — au is called a homothety.

It follows from (6) that the projective transformations of P(£) into itself
form a group, called the projective group of P(E) and denoted by PGL(E).
Theorem 3 can be rephrased to say that if dim P(E) > 2 we have PGL(E) =
GL(E)/Z*, where GL(E) is the linear group of E and Z the center of K.

Notice that the fixed points of a projective transformation P(u) are the
images of the (non-zero) eigenvectors of u.

Assume K commutative and fix a projective frame for P(E) (or, equiva-
lently, fix a basis of E up to a scalar factor). A projective transformation of
P(E) can be expressed in this basis by a class of proportional non-singular
matrices, whose entries b;; are defined by the condition that

{B} a.y_f=bjgzg+b_f1z1+---+!ijnzn for J=201. .

where a € K* is arbitrary, (z¢,...,2,) are the homogeneous coordinates
of an arbitrary point in E and {yg,...,) the homogeneous coordinates
of its image.

Theorem 4. Let P(E) and P(E") be projective spaces of same dimension
n over & commulative field I, with projective frames ( Py, ..., Fn, Pn41) and
(Fas- ... Py, Pi.y), respectively. There exists a unique projective transfor-
mation & : P(E) — P(E") such that h(F,) = P! foralli=0,1,...,n,n+1.

Proof. Lift (Py,...,P,) to a basis (ep,...,e,} of E such that pleg + --- +
e€n) = Pn4y (theorem 2), and lift (Pf,..., P,) to (e,...,e,). If h exists
and is of the form h = P(u), each u(e;), for i = 0,...,n, must be of the
form ajej, where g; is a non-zero scalar. Since h(Ph41) = P.,,, the vector
uleg+---+ep) can be written b(e}, + - - -+ ¢/, ). Thus all the a; are equal to
b; this determines u up to a multiplicative scalar, and h = P (1) uniquely
(theorem 3). The existence of u is obvious: define u by u(e;) = ¢! for
i I & O

If K is skew, uniqueness fails. For example, take a and bin I such that ab 3 ba.
If u is the linear map that takes the canonical basis (e, f) = ((1,0),(0,1)) of K*

(LAY L B R =k s b - 3 g . ’
Eah i N pTREF RN b Al Sk

hw =Pl i




8 1. Projective Spaces

into (ae,af), it is easily checked that k = P(u) leaves invariant the points of the
“canonical” frame of P{K?) (those with homogeneous coordinates (1,0), (0,1)
and (1,1)). But P{u) cannot be the identity, otherwise u(e + bf) = ae + baf
would be of the form e{e + bf), which would imply ¢ = @ and ab = ba.

Remark. Theorem 4 shows that, for K commutative, the number of ele-
ments of PGL(E) is equal to the number of frames of P(E). In particular,
if K is finite, this number is given by formula (4).

1.3. Projective and Affine Spaces

Recap on affine spaces

Recall that an affine space is a set E on which the additive group of a
vector space (denoted by v(E) or E) acts simply transitively. One often
says that the elements of E are points and those of v{F) are vectors, or
translations of E; and v(E) itself is called the vector space underlying E.
The image of a point a under the translation ¢ is generally denoted by t+a,
whence the formulas

s+(t+a)=(s+1t)+a,
O04a=a,

which simply translate the fact that a group is acting on a set. The unique

translation that takes a point a into a point b is denoted by b — a, or ab.
In this notation we have Chasles’s formula

(9} (ﬂ—ﬁ]-l-[b—ﬂj:c-—u.,.

The commutativity of the group v(E) is equivalent to the parallelogram
rule

(10)  b—a=V-d ifandonlyif a-a'=b-10"
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The choice of a point a € E allows one to identify E with its underlying
vector space v(E): each point m € E gets associated with the vector
m — a € v(E). Although this choice of an origin, or vectorialization, is
by no means intrinsic, one often performs it in order to make calculations
easier.

An affine frame of F is made up of a point ag and a basis (e;,...,eq) of
w(E). The coordinates of a point m in this frame are those of the vector
m — agp in the given basis. [t amounts to the same to give the n 4+ 1 points
dg, 41 = €1 + Gg, ..., iy = &n + ap.

An affine linear subspace (or subvariety) L is a subset of E that is either
empty or of the form L = V + a, where V is a vector subspace of v(E)
and a is a point in E. Since V+a=V'+a' ifand only if V = V' and
a' —a € V, the vector subspace V is uniquely determined by L; it is called
the direction of L. Two affine subspaces are called parallel if they have the
same direction. When we choose an origin for E, affine subspaces (other
than the empty one) are simply translates of vector subspaces of v(E).
Every intersection of affine subspaces is one, so we have the notion of the
affine subspace generated by a subset A C E.

Given points my,...,my € E and scalars ay,...,a, € K such that a; +
«o:+ a, = 1, we define the baryeenter of the m; with weights a; as the
unique point g such that

g—p=ay(m —=p)+---+a;(m; —p)

for every p € E.

The operation of taking barycenters is “associative™: a barycenter of
barycenters of points m; is a barycenter of the m;. It can be shown that
the set of barycenters of a set of points my is just the affine subspace
generated by the m;. In particular, if a subset 5 C E is invariant under
the operation of taking barycenters of sets of points, S is an affine subspace.

Remark. For K # F; a subset invariant under the operation of taking barycen-
tem:;r{ two points is an affine subspace. But over F; the barycenters of two points
are just the two points, so all subsets are invariant under this operation.

In an affine frame, with coordinates denoted by (zy, .. .,::n],. an affine
subspace is defined by a system of linear equations

B1Gi1 + e Bpdin = by o ey o

where the aj; and the b; are scalars.

_ One can choose the linear forms so that their lefi-hand sides are linearly
independent; then the dimension of the affine subspace is n — g. [(The
dimension of an affine subspace is the dimension of its direction.)

This is only true about non-empty affine subspaces. The empty affine subspace
can be defined by the equations #; = 0 and z; = 1, for example.
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Example: the complement of a hyperplane in a projective space

Theorem 4. Let P be an n-dimensional projeclive space and H C P a
hyperplane. Denote by T' the sel containing the idenlity and the projective
transformations of P that leave invarian! eracily these poinis of P thal
belong to H. Then T is a group isomorphic to the additive group of an
n-dimensional vector space, and it acls simply transilively on P\ H.

Proof. Write P = P(V1) and H = P(H), where V] is a vector space over
K and H; € Vi a hyperplane. Choose # € V) such that V] is the direct
sum of Hj and Kz, and consider u € GL(V}) such that P({u) € T and
P(u) # Id. Since P(u) leaves invariant all points in H, there exists a € K
such that u(z) = az for every x € H;. On the other hand, we can write
u(z) =h+bz, with he H, and b € K.

A fixed point of P(u) comes from an eigenvector of u; if we write such
a vector in the form z 4 ez, with x € H; and ¢ € K, the condition is that
u(z+ez) = d(z+c2) for some d € K, that is, that az+c(h+bz) = de+dez.
This is equivalent to the system

(a —d)z+ch =0,
s
(8) ch = de.

Thus P(u) has a fixed point outside H if and only if there exists a solution
(e,d, ) of (S) with ¢ # 0. If h = 0, there exists such a solution with ¢ = 1,
d = b and = = 0; the assumption P(u) € T then requires P{u) = 1, whence
a=h If h £ 0, on the other hand, (8) and ¢ 3£ 0 together imply d = cbe™?
and (a — cbe=1)x = —ch; this has a solution unless a — ebe=! vanishes for
every non-zerc ¢, that is, unless a and b are equal and belong to the center
of K.

Thus if P(u) € T we can normalize u so as to make a = b = 1; then
u is the identity on H; and wu(z) is of the form u(:) = h, + z, where
h, € H; is uniquely determined by P(u). Furthermore, it’s easy to see
that hyew = hy + hy if P{u), P(v) € T. Hence the group structure on 7'
That T' acts simply transitively on P\ H follows from the fact that the
translations h, act simply transitively on z + H;. O

Embeddings of an affine space in a projective space

Let E be an affine space over K, with underlying vector space v(E'), and
a € E a point. The projective closure E of E is defined as

(11) E=P(u(E) x K).

We also define an injection j, : B — E by

(12) ja(m) = p(m —a,1) for m € E.

This injection is determined, up to a translation, by the choice of af The

g

image jo(E) is the complement of the hyperplane P{‘-"'I(-}-“-'?-_';' oL R
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Let E and F be affine spaces over K. A map f : E — F is called
an affine map if there exists a linear map v(f) : v(E) — v(F) such that
v(f)(m —m') = f(m) — f(m') for everym,m’' € E. If f: E — F is affine
and one-to-one, it defines a projective map

(13) f=Pu(f) xdg) : E — F.
This map extends f in the sense that
(14) f(ia(m)) = jay(f(m))  for every m € E;

this is because f(j,(m)) is the canonical image in F of (f(m) — f(a), 1).
With the obvious notations, we have

(15) o =15,

so there is a canonical injection from the affine group of E into the projec-
tive group of E. Its image consists of the projective transformations that
leave the hyperplane at infinity P(v(E) x 0) globally invariant.

Affine coordinates and homogeneous coordinates

Thus every affine space E can be seen as the complement P\ H of a
hyperplane in a projective space. This hyperplane and all sets lying n it
are said to be at infinity. Notice that two affine subspaces are parallel if
and only if they have the same points at infinity (more rigorously, we should
say that their projective completions have the same points at infinity, but
we won’t be so sticky).

Conversely, if we pick a hyperplane H in a projective space P and con-
centrate on the affine structure of P\ H, we’ll often say that H is the
hyperplane at infinity, or that H has been sent to infinity. We can then
choose a projective coordinate system (zp, 2y, . ..y &n) on P in such a way
that H is the hyperplane of equation 2o = 0. If me€ Pisa point not on
H, the n-tuple (z5'21,...,25z,) gives the affine coordinates of m. If a
projective linear space L of P which is not at infinity is given by the system
of (homogeneous) equations

Todjo + 21851 + -- -+ Tpajn =0 for j=1,...,4¢,

its in!aersectian with P\ H is the affine subspace defined by the (affine)
Equn,t.li:u?:-s G0+ 3951 + -+ Yntjn = 0. If K is commutative and L is an
algehrmc_ subset of P, not contained in H, and defined by the homogeneous
polynomial equations

g e =10 forafi=i]l i g
the intersection LN( P\ H) is defined by the equations L o B T R T
In sum, to pass from projective to affine equations, just take xq = 1.

) "d‘ffhen L is at infinity, the system of affine equations obtained by this procedure
is “impossible”, that is, it has no solutions, even over the algebraic closure of K.




12 1. Projective Spaces

Conversely, let £ be an affine space with a fixed affine frame, and E]cnote
by (¥1,-..,¥n) the coordinates of a point m € E. Embed E in £ = P
using the injection j, associated with the origin a of the chosen frame. By
(11) and (12), (1,1, ..., un) is a set of homogeneous coordinates for jz(m),
in the corresponding projective coordinate system of K x v(£). If L is an
affine subspace of E defined by the equations

Y181+ 4 Ynjn = b; for j=1,..050

the projective closure L of L is given by the equations 2yaj1 4+ Taljn =
zobj, and we have L = (P\ H)n L, where H is the hyperplane at infinity.

Now assume that K is commutative and consider an algebraic subset 4 of
the affine space E, defined by a single polynomial equation F(yy,...,4n) =
0. Denote by d the total degree of F, and form the homogeneous polynomial
Fy of degree d associated with F':

(15) BhlEn ox, o ey = 2R ElE fra, o 2 2g)

The algebraic subset of P defined by the homogeneous equation Fy[xg,
Ti,...,Zs) = 0 is called the projective closure of A, and is denoted by A.
Since Fi(l,y1,...,%a) = F(3n,...,Un), the set A is the intersection of A
with P\ H. The points of A\ A are called points at infinity of A; they
make up an algebraic subset of H.

In this discussion we have limited ourselves to hypersurfaces, or algebraic sets
defined by a single equation (hypersurfaces are called curves or surfaces if n = 2
or 3, respectively). The dimension of such objects, whether affine or projective,
is m — 1, by any reasonable definition.

In treating lower-dimensional algebraic subsets of £, defined by several poly-
nomial equations, it’s not enough to homogenize the defining equations; one must
also homogenize all the polynomials in the ideal generated by them.

For example, consider in C? the circle € defined by the equations 22 4 y° 4 2% =
1 =0 and 2% + 4% + 2? — 2z = 0. The corresponding homogeneous equations are
r? +y* +2*—1* = 0 and 2* 4+ y* + 2* — 2zt = 0 (where the homogenizing variable
is written i instead of zg). The algebraic set defined by these two eguations is
the union of C' with a curve at infinity, of equation z* + y® 4 z* = t = 0, which is
called an umbilic. But the actual projective closure of € is smaller than that: it
has only two points at infinity, where it intersects the umbilic. The reason is that
the polynomial 2z —1, for example, is in the ideal generated by =* +3*+2%2—1 and
zf 4+ 4* 4+ z? — 21, so by definition points in € must be zeros of the homogenized
polynomial 2z — ¢ = 0. In this case we can get around the problem of extra points
at infinity by replacing one of the two equations of spheres that define C by the
equation 2z — 1 = 0 of their radical plane. There are cases, however, where no

such replacement is possible.

Given a projective space P and a system of p{ﬂjecii"ﬂ ;“:_“‘dl_“&tﬁ for it,
say (20, 1, . - . Tn), the hyperplanes H; of equation 2i =0, for=0,...,n,
have empty intersection, which means that P 15 th‘L T ]

3. Projective and Affine Spaces 13

affine spaces P\ H;. The affine coordinates in P\ H; of a point whose
homogeneous coordinates are (zg,xy,...,2,) are given by

-1 51 -1 =
[ rEat SRR Xid, B Bigly s s By T )

Consider a point in P\ (HgU H;), and let its affine coordinates in P\ Hy
be (31,-..,¥s); by assumption, g # 0. The homogeneous coordinates of
this point are (1,11,...,¥s), so its affine coordinates in P\ H; are

{lﬂ') (yi_ldfi'lylw~--!ul';'_1!-|'i-1:!1'i_11|'i+1:---:y;lyn]-

In practice we allow ourselves some abuses in notation. For example, if
we start from the affine curve C defined by z® + zy + 1 = 0 and denote
by z the homogenizing variable, the projective closure C of C is given by
2% — zyz + 23 = 0; in order to study the point (2,y,z) = (0,1, 0), the only
point at infinity of the closure, we can make y = 1, obtaining the equation
z? + 2% — 2z = 0 for the “affine piece” of C that lies in the affine space
y # 0. Obviously the letters z,y, z don’t have the same meaning in the
three equations.

Simple and mulliple poinis

Here we assume that K is commutative and infinite. Let V be an affine
hypersurface with equation F(y1,...,y) = 0. We will write the polyno-
mial F in the form

F¥Y)=Fy+ Fi(Y)+ -+ Fa(Y),

:whe::e Y = (V1,...,Ya), F; is homogeneous of degree j and Fy # 0. The
integer d is called the degree of F. Let D be the affine line defined by
¥i =ai+bit, wherei=1,.. nandte K is a parameter; D goes through

ﬂ]:l: point A = (ay,...,a,;). The parameter values at the intersections of D
with V are the roots of the equation
(18) Flay +bt,...,an + bat) = 0.

This equation is identically satisfied if and only if V' contains D, since we
assumed K infinite; from now on we exclude this case. Otherwise (18) has
de:g;ree at most d, so D has at most d distinct common pointa &,..., P.
with V. Let f;,...,1, be their parameters. The multiplicity m; of the root
t; of (18) rdep-euds only on the point P;; it remains the same if we change
frafnea or if we change the parameter along D (by an affine transformation).
This uumb?r m; is called the intersection multiplicity of V and D at P;.

; Ifthf. point A = (ay,...,ap) is on V, (18) has a root at £ = 0. This root
18 simple 1f‘and only if the coefficient of ¢ in (18) is non-zero. By Taylor's
form_ula., tl'fas coefficient is F{(a)b, + - - - + F}(a)b,, where F!(a) is the i-th
Pﬂ.;ﬂ-lﬂ-i derivative of I at (ay,...,8,). If at least one partial derivative at
A: 15 non-zero, we say that A is a simple point of V. Then the root = 0 is
simple unless the vector (by,...,b,) satisfies F{(a)by + .- + Fl(a)b, = 0;
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this condition amounts to saying that the tip (11, ...,4,) of the vector is
on the hyperplane

(19) Fi(a)(yn —a1) + -+ + Fy(a)(ya — an) =0,

called the tangent hyperplane to V at A. The lines of this hyperplane that
go through A and whose intersection multiplicity with V' at A is at least
two are said to be tangent to V' at A.

A point A = (ai1,...,8,) of V such that F{(a) = --- = F;(a) = 0 is said
to be multiple (or singular); such points form an algebraic subset of V,
defined by n + 1 equations. To study such a point more closely, we make
it the origin; then Fg = Fi = 0 in (17). Let m be the smallest integer
such that the homogeneous polynomial F, is non-zero; m is called the
multiplicity of A on V. Equation (18) becomes

& Fon(B1y - - Bu)t™ -+ Fulbr, ..., b}t = 0;

thus the intersection multiplicity of ¥V and D at A4 is m unless [} lies in the
tangent cone of equation Frn(y,...,0m) = 0.

Assume now that all the roots of (18) are in K (for example, if K is
algebraically closed). If (18) has maximal degree, namely d, we can say
that D and V have d common points, where each point P; is counted with
its intersection multiplicity m;. But if (18) has degree less than d, because
its highest coefficient Fy(by,...,bs) vanishes, it’s no longer true that V and
I have d common points. Where are the other points gone? To infinity,
of course. Indeed, the relation Fy(by,...,by) = 0 implies that the point at
infinity of I is in V' (or rather, in 1;"}, we say then that the direction of D
is an asymptotic direction of V.

Examples. The intersection of the plane curve z* — y* — £y = 0 with the line
y = bz is determined by the equation (1 — 3*)z* — be® = 0. This equation has
z = 0 as a double root, that is, the origin is a double point, The degree drops
to 2 for b= 1,—1,1, —1, which are the slopes of the asymptotic directions of the
curves,

The surface £* + y* + z* = 0 has only one multiple point in affine space, the
origin: if the partial derivatives 2z, 3y”, 5z* all vanish we have r =y = z = 0 in
characteristic 2 2, 3,5, and in characteristic 2, 3 or 5 two of the coordinates are
zero, hence so is the third becaunse of the equation of the surlace. Its asymptotic
directions, those along which the highest-degree term vanishes, are the directions
contained in the plane » = 0. The intersection z = ¢ = 0 of this plane with the
plane at infinity is the part at infinity of the projective closure of the surface.
All points in this intersection are singular (in the closure); to see I:h't's’ SMe Can
observe that the degree of (18) drops by 2 in all directions such that =z = 0, o

: ; i tehes © # 0 and y £ 0, g4
else write the equation of the surface in the affine pa s » Bay,
and take partial derivatives (the equation in the patch ¥ 5'E : for example, j5

- ..ll"

#4220 + 55 =0). e (AR v .
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Thus we're led to consider, in a projective space P, the intersection of a
hypersurface V of homogeneous equation G(xq,...,2z,) = 0 with a line D
of parametric equation

I = ot 4 div hrti=

where the “parameter” (u,v) in K? is to be understood projectively, that
is, (u,v) # (0,0), and two proportional pairs parametrize the same point,
The intersection of V' and D is governed by the equation

(21) Gleou + dov, ..., cou+dav) = 0.

This is a homogeneous equation of degree d = deg G in u and v. Replacing
K, if necessary, by an algebraic extension, we can write the left-hand side
of (21} as a product of linear factors in (u, v), as follows: factor out u*, for
k > 0 maximal, then solve the equation obtained by making u = 1; each
root €; of this equation yields a factor v—eju of (21). Counting each factor
with its exponent, we obtain d solutions {u, v), each of which can be put
in the form (0,1) or (1,¢;). Thus we obtain exactly d points common to V
and D. In the old literature this is expressed by saying that ¥V and D have
d common points, “real or imaginary” (replace K by its algebraic closure),
“distinct or not” (count multiplicities), “at finite distance or at infinity”
(replace the affine hypersurface by its closure).

Thus we see where the “disappearing” intersection points go when equa-
tion (18) drops from degree d to degree d — k. The idea is to take G above
to be the homogeneous polynomial associated with F, and the ¢; and d;
(i =1,...,n) to describe the same line D whose affine representation is
Ui = a;+b;t: writing o = u and z; = a;u+b;v, for example, we get ¢p = 1,
do =0, ¢; = a;, d; = b;. Then (21) becomes

(22) Glu,mu+ by, ..., aqu+ byv) = 0.

Upon setting v = tu this equation becomes u"G(1, ay +bit, ..., an +bat) =
0, which reduces to (18) if u # 0. The d — k roots t; € K of (18) account
for the d — k factors v —t;u in the left-hand side of (22); but there are also
k factors u, corresponding to the point at infinity of D, counted k times.
Notice that the intersection multiplicities are the same in the affine and
the projective cases.

F‘ina]]_'f, let’s spell out the projective version of the notions of simple
points and tangent hyperplanes. Assume that a point A, with homogeneous
coordinates (eq,...,¢,), lies on V, so that the coefficient of u? in the left-
hand side of (21) is zero. D and V intersect at 4 with multiplicity one if
and only if v is a simple factor in the left-hand side of (21), if and only if
the coefficient of u%~!v is non-zero. By Taylor’s formula, this coefficient
18 doGy(c) + - - + du G (c), where Gi(e) is the i-th partial derivative of G
evaluated at (eg,...,c,).

Now A is a simple point of V if any line intersecting V" at A does so with
multiplicity one; by the previous paragraph, this happens if and only if at
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least one of the Gi(c) is non-zero. Thus the multiple points of V' are defined
by the n + 2 equations G(z) = Gi{(z) = 0. If A is a simple point of V the
tangents to V at A (that is, the lines whose intersection with V at A has
multiplicity at least 2) are characterized by belonging to the hyperplane of
equation

(23) ToGy(z) + 211G (2) + -+ zaGL(2) = 0,
the tangent hyperplane to V' at A.
Remark. By Euler’s formula doGp(e)+- - -+dn Gy (c) = dG(z), a point where all

the partial derivatives of G vanish is on V if d is not a multiple of the characteristic
of K.

If G(zo,...,xn) is obtained by homogenizing Fiy1,...,¥n), it is easy to see
that Gi(1,41,....%s) = Fi{y1,...,9n) for i =1,...,n, whence
Go(lign, .- ¥n) = dF(y) = m Fi(y) = - = ynFuly)-

Applying this formula to a simple point A = (1,a1,...,as) of V¥ we see that, since
F{a) = 0, equation (23) reduces to the affine equation for the tangent hyperplane
(19).

Three important theorems.

We will often use phrases borrowed from elementary geometry, such as
“draw the line passing through two points®, “collinear points”, “concurrent
lines”, “coplanar lines”, and so on. The line passing through two (distinet)
points of an affine or projective space will be denoted by Dgp or simply ab.

Theorem 5 (Desargues). In a projective space P, let D, I and DV
be distinct lines having a common point O. IfALB e D, A'\B' € D
and A", B" € D" are points dislinct from one another and from O, the
three intersection points I = Dag N Dgge, J = Dyqv 0 Dpge and K =
Dgign 0t Dgige are collinear.

Proof. These intersection points are well-defined: D and I, for example,
lie on the same plane, so Dya and Dgp also line on that plane; the two
being distinct we can apply theorem 1 (section 1). To show collinearity,
start with the case when the three lines D, I and D" are not coplanar.
Then they generate a three-dimensional projective linear space, which eon-
tains the planes AA’A” and BB'B". Again by theorem 1, these two planes
must have a line in commeon, which contains I, J and K. /AN

The case when D, D' and D" are coplanar follows by projection, bug
we will give a direct proof. In the plane of the three lines, let the line
at infinity be Dy, and assume first that O ¢ Dys. Let the origin be O,

: z alars a,a’,a" € K

Locking at A, B,..., B" as vectors, we can find scal 2@ F ik anch
that B = aA, B’ = a'A’ and B = a"A”. Since I 18 at infinity, A4’ anq
BB are parallel, so there exists ¢ € K such that B "-,
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D"

is, a’A' — aA = cA’' — cA; this implies @’ = a = ¢ because A and A’ are
linerarly independent. Similarly a = a”. But then B"” — B’ = a(A" — 4),
which shows that D4 4» and Dpi g are parallel, that is, their intersection
K is on the line at infinity Dy .

Finally, if O € D;;, all three lines D, D' and D" are parallel and ABB' A’
nl:::i ABB" A" are parallelograms. The translation B— A takes A’ to B’ and
A" to B", s0 Daiqn and Dgige are parallel, and again K is at infinity. O

A B

TN,
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Theorem 6 (Pappus). Let P be a projective plane over a field K. The

Jollowing conditions are equivalent;

(1) For any two distinct lines D, D’ and any points A, B,C € D and
A, B',C" € 1Y, all distinct, the points [ = Dag N Dpar, J = Dear N
Dacr and K = Do N Dege are collinear.

(2) K is commutative.

Proof. Notice first that in an affine plane two points with coordinates (p, q)
and (¢, ¢') are collinear with the origin I if and only if p~'¢ = el

o
.
A J
. 4
A
B u D
K —
VA s
| b a

Now take I, € and C' as vertices of a projective frame, Doer as the
line at infinity and ' = D N D' as the unit point. All points in D have
second coordinate 1; write A = (a,1) and B = (b,1). Since A, B’ and I are
collinear and B’ has first coordinate 1, we have B' = (1,a~!). Similarly,
the coordinates of A’ are (1,5-1). Thus J has coordinates (a,4!) and
K has coordinates (b, a~!); they are collinear with the origin if and only
if a=16~1 = b~'a!, if and only if ab = ba. Since a,b # 0 are arbitrary
I, J, K are always collinear if and only if K is commutative. a

Theorem 7 (fundamental theorem of projective geometry). Let P = P(V)
and P' = P(V") be two projective spaces of same dimension n 2> 2 over
fields K and K’. If f : P — P’ is a bijection that takes caﬂmearf Points
into collinear points, f is induced on P by a bijection g - _‘Vl—' V* that is
additive and satisfies glaz) = s(a)g(x), where s : K — K" 5 @ fized field
tsomorphism,

A bijection taking collinear points into collinear
An additive map g : ¥V — V' such that g(=} =4
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phism s : K — K" is called semilinear (with respect to to ). It is clear that a
bijective semilinear map preserves linear dependence, and that it induces a map
£ P(V) — P(V’); thus the converse of theorem T is trivially true.

We could have restricted the theorem’s hypothesis to sets of three collinear
points, because for (fixed) a,b € A and a variable z € Dap, the image f(z) is on
the line D ray, rra).

Corollary. A cellineation from a projective space of dimension at least
two into ilself is a composilion of an automorphism of the fleld of scalars
with a projective iransformation. a

The fields Q, R and F, for p prime, have no non-trivial automorphisms, so
for such field collineations and projective transformations are equivalent.

Proof of theorem 7. Let ap,...,a, be projectively independent points
in P. For j = 0,...,n, denote by L; the projective linear space gen-
erated by ag,...,a; and by L; the projective linear space generated by

flao), ..., fa;).

aj

Li <1

First we see, by induction on j, that f(L;) C L}: indeed, for every
me L;, the line ajm intersects Lj_; at a point p; since f(m) is collinear
with f(a;) and f(p), which lies in Li_1 C Lj, we obtain f(m) € L}. This
also implies that f(ag),..., f(an) are projectively independent, because
P’ = f(P) = f(La) C LI, by surjectivity.

':Cm the other hand we have AL} D L}, because f is surjective, and
points m € P\ L; are mapped outside L% (complete the set (ap, ..., a;,m)
nto a set of n + 1 projectively independent points; by the previous para-
graph f(ag), ..., f(a;), f(m) will be projectively independent). Thus we
conclude that f(L;) = L;. }

1 Now choose in P an origin O and a hyperplane at infinity #. Then f(H)
18 a hyperplane H' of P!, which we also take to be at infinity; and we take
Q' = f(0O) as the origin. In this way we get a bijection, also denoted by f
between the vector spaces £ = P\ H and E' = P'\ H'; we'll be done if w-;
show that f is semilinear with respect to some field automorphism s, sinee
then g = f x s will be the desired map from V = E x K into VI = E' x K*.
: The map f : E — E' takes lines into lines and parallel lines into parallel
lines. Since f(O) = @', the parallelogram rule shows that f(z 4+ y) =

~ f(z) + f(v) when = and y are linearly independent.
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¥
Otherwise we have y € Kz and, since we assumed dim E = 2, we may
we take a point z ¢ Kz, which will be linearly independent of z, y and
z +y. In addition, y + z is linearly independent of z. In this case, too, the
additivity of f is verified, because

fz+y+2)=flz+v)+2)=flz+v)+ f(2) = flz + (v + 2))
= f(z) + fly + z) = f(z) + f{v) + f(2).

Fora € K and £ # O, the points @, x and az are collinear, hence so
are O, f(z) and f(az). Thus there exists s(a,z) € K' such that f(az) =
s(a,z)f(z). If  and y are linearly independent, so are f(z) and f(y), and
we see, by calculating f(a(z + y)) in two ways, that s(a,z) = s(a,y) =
s(a, z+y); this can be checked for z and y linearly dependent as well, using
an auxiliary vector z as in the previous paragraph. Thus s(a, z) does not
depend on z, and we denote it by s(a).

For £ # O, hence h(z) # O, the formulas f((a + b)z) = f(az) + f(bx)
and f(a(bz)) = f((ab)x) immediately give s(a + b) = s(a) + s(b) and
s{ab) = s{a)s(h). Since f(Kz) = K'f(z), we conclude that 5 : K — K'is
surjective, hence an isomorphism. E

Remark on the affine analogue of theorem 7.

Let f: A — A" be a bijection taking triples of collinear points into triples
of collinear points, where A and A4’ are affine spaces of same dimension
n > 2, over K and K’, respectively. When K = F3, this assumption is
vacuous, because lines have only two elements. However, if & # F3, one
can show that f is semilinear (as a map from the vectorialization of 4 at
an arbitrary point O to the vectorialization of 4 at O' = f(O)).

The proof is very similar to that of theorem 7. One takes affinely in-
dependent points ag,...,a, € A, and, denoting by L; and L} the alline
subspaces generated by ag,...,a; and f{ag),..., f(a;), respectively, one
shows by induction over j that f[Lj} B Lj-. For m € Lj, there is no
difficulty if the line may intersects L;_;. If not, ma; is parallel to some
direction in L;_;; one then takes an auxiliary point p € Dima,, 50 the line
a;p is not parallel to L;_,. Setting ¢ = ajpN L;—1, one concludes fram the
collinearity of aj, p and ¢ that f(p) € LY, and from the collinearity of m,

and ap that f(m) € L%. :

g There follcwslgfm}m the surjectivity of f, asin thweTlTi'that‘ f ELj] =L
for every j, and that f takes lines into lines and paralle 208 M Pits]le]
lines. An application of the parallelogram rule :
as in theorem 7 complete the proof.

B Elicke the line going through a and b by D, or ab.)
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1.4. Axiomatic Presentation of Projective and
Affine Planes

Incidence arioms: projective case

The fundamental theorem of projective geometry (theorem 7) hints that
it is possible to reconstruct projective geometry from the notion of colline-

arity. That’s just what we're going to do, axiomatically, in the case of the
plane.

Consider a set P of points, called a plane, and a non-empty family of

proper, non-empty subsets of P, called lines. Assume that the following
incidence axioms are satisfied:

(A1) Two distinct points in P belong to exactly one line.
(A2) Two distinct lines in P have ezactly one common point.

Remarks

(1) Notice the symmetry of the two assertions, which can be rephrased to say
that “two points determine a unique line” and “two lines determine a unique
point”. We will come back to this topic in section 5, when we discuss duality.
Notice also that A1 by itself already implies that two distinct lines have at
most one common point, and similarly for A2,

{2) An axiomatic definition of n-dimensional projective spaces would involve n—1
families of non-empty, proper subsets of P, the j-dimensional projective linear
aful:-apa:ces of Pforj=1,...,n — 1, satisfying the following conditions: any
141 p:;u’nts not contained in an (; — 1)-dimensional projective linear space
dMIE_::Imne a unique j-dimensional projective linear space; any intersection of
pru_iecti\re linear spaces is one; and the dimension of the intersection of two
Projective linear spaces is given by the formula in theorem 1, the notion of

the grr?juct;ive linear space generated by a set making sense by the previons
condition. This is all quite easy to write down explicitly in the case n = 3.

) The following are immediate consequences of axioms Al and A2. (We
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2 FRANZ LEMMERMEYER

INTRODUCTION

The aim of this article is to show that the arithmetic of Pell conics admits a
description which is completely analogous to that of elliptic curves: there is a theory
of 2-descent with associated Selmer and Tate-Shafarevich groups, and there should
be an analog of the conjecture of Birch and Swinnerton-Dyer. For the history and
a theory of the first 2-descent, see [0} [7, [8]. The idea that unit groups of number
fields and the group of rational points on elliptic curves are analogous is not new;
see e.g. [1l 2[5, [14] for some popularizations of this point of view. It is our goal
here to show that, for the case of the unit group of real quadratic number fields,
this analogy can be made much more precise.

1. THE GrouP LAw oON PELL ConNIcS AND ELLIPTIC CURVES

Let F € Z[X,Y] a polynomial. If deg F' = 2, the affine curve of genus 0 defined
by F' =0 is called a conic. Let d be a squarefree integer # 1 and define

_Jd ifd=1mod4,
~ ]4d ifd=2,3 mod 4.

Then the curves C : X2 — AY? = 4 are called Pell conics; they are irreducible,
nonsingular affine curves with a distinguished integral point N = (2,0).

If deg F' = 3, the projective curve E described by F has genus 1 if it is non-
singular; if in addition it has a rational point, then FE is called an elliptic curve
defined over Q. Elliptic curves given by a Weierstral equation Y2 = X3 4+ aX +b
are irreducible, nonsingular projective curves with a distinguished integral point
O =[0:1:0] at infinity.

Both types of curves have a long history: Pythagorean triples correspond to
rational points on the Pell conic X* 4+ 4Y? = 4, solutions of the Pell equations
have been studied by the Greeks, the Indians, and the contemporaries of Fermat,
such as Brouncker and Wallis. Problems leading to elliptic curves occur in the
books of Diophantus and were studied by Bachet, Fermat, de Jonquieres, Euler,
Cauchy, Lucas, and Sylvester before Poincaré laid down his program for studying
diophantine equations given by curves according to their genus.

1.1. Group Law on Conics. The group law on non-degenerate conics C' defined
over a field F is quite simple: fix any rational point N on C; for finding the sum
of two rational points A, B € C(F), draw the line through N parallel to AB, and
denote its second point of intersection with C' by A+ B. In the special case of Pell
conics, the resulting formulas can be simplified to

Proposition 1. Consider the conic C : Y? — AX? =4, and put N = (2,0). Then
the group law on C with neutral element N is given by

rt + Asu ru -+ st
() + (tw) = (5, =)

It is now easily checked that the map sending points (r,s) € C(Z) to the unit
“L%\/E with norm 1 in the quadratic number field K = Q(v/A) is a group homo-
morphism. Observe that the associativity of the geometric group law is equivalent

to a special case of Pascal’s theorem, which in turn is a very special case of Bezout’s
Theorem.
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1.2. Group Law on Elliptic curves. Given an elliptic curve E : y?> = 23 +az+b
defined over an algebraically closed field K, we define an addition law on E by
demanding that A + B 4+ C = 0 for points A, B,C € E(K) if and only if A, B,C
are collinear. Since vertical lines intersect F only in two affine points, we have to
regard E as a projective curve; then vertical lines intersect F in two affine points
as well as in the point at infinity. Associativity follows geometrically from a special
case of Bezout’s Theorem.

2. THE GROUP STRUCTURE

Let us now compare the known results about the group structure of Pell conics
over the most common rings and fields. Generally, we will study conics in the affine
plane over integral domains, and elliptic curves in the projective plane over fields.

2.1. Finite Fields. Let C : 22 — Ay? = 4 be a Pell conic defined over a finite field
F, with ¢ = p/ elements, and assume that C is smooth, i.e. that ptA. Then
AN f
C(Fy) ~Z/mZ, where m=gq— (—) .
p

If A is a square mod p and p is odd, this is immediately clear since there is an
affine isomorphism between C and the hyperbolas X? — Y2 = 1 and XY = 1; in
particular, one has C(F,) ~ F = GL1(F,) in this case.
On the elliptic curve side, we know that
EF,) ~Z/mZ & Z/neZ,ny | na,
Moreover, we have #E(IF,) = (p + 1) — ap, where |a,| < 2,/p by Hasse’s theorem.

2.2. p-adic Numbers. If p is an odd prime not dividing A, then
Z/(p-1)@Z, if (5)=+1,
Zi(p+1) 82, if (2)=-1,

Z/2® 7, if p| A#£ -3,
Z/6®Zy, ifp=3, A=-3.

C(Zy) ~

Reduction modulo p* then yields

Z/(p-1) @ Z/pFT i (D) = +1,
Z/(p+1) @ Lo i (5) = -1,
Z/28 Z/p* if p| A# -3,
Z/6®7Z/3" 1 ifp=3A=-3.

C(Z/p*) =

For elliptic curves E/Q, we have a reduction map sending Q,-rational points to
points defined over F,,. The group E,s(F,) is the set of all nonsingular points of
E over F,. The subgroups E;(Q,) (i = 0,1) of E(Q,) are defined as the inverse
images of F,s(F,) and of the point of infinity of E(F,) under the reduction map.
These groups sit inside the exact sequence

0 —— Ei(Qp) —— Eo(Qp) —— Ens(fp) —— 0.
The structure of E,s(F,) is known: if E/F, is nonsingular, it was discussed in
Subsection if E/F, is singular, then E,;(F,) is isomorphic to C(FF,) for a
certain conic C, and we say that F has additive, multiplicative or split multiplicative
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reduction if the conic is a parabola (C(F,) ~ F,), a hyperbola (C(F,) ~ F)), or an
ellipse (C(Fp,) ~ F,2[1], the group of elements with norm 1 in F,2).

We also know hat E;(Q,) ~ Z, and that the quotient group E(Q,)/Eo(Q,) is
finite. Its order ¢, is called the Tamagawa number for the prime p, and clearly
¢p = 1 we have for all primes p { A. More exactly it can be shown (albeit with
some difficulty) that ¢, < 4 if E has additive reduction, and that ¢, is the exact
power of p dividing A otherwise.

2.3. Integral and Rational Points. Now let us compare the structure of the
groups of rational points: for elliptic curves, we have the famous theorem of Mordell-
Weil that E(Q) ~ E(Q)tors ® Z", where E(Q)tors is the finite group of points of
finite order, and r is the Mordell-Weil rank. For conics, on the other hand, we
have two possibilities: either C(Q) = @ (for example if C : 22 +y* = 3) or C(Q) is
infinite, and in fact not finitely generated (see Tan [12]). The analogy can be saved,
however, by looking at integers instead of rational numbers: if K is a number field
with ring of S-integers Og, then

C(OS) = C(OS)tors YA E(K) ~ E(K)tors DU

where r > 0 is called the Mordell-Weil rank. Shastri [10] computed the rank r for
the unit circle over number fields K and S = @.

Note that the group of integral points on the hyperbola XY = 1 is isomorphic
to R* = GL;(R). Number theoretic algorithms working with the multiplicative
group of R = Z/pZ in general have an analog for conics, as we will see in the next
section.

3. APPLICATIONS
3.1. Primality Tests. The classical primality test due to Lucas is the following:

Proposition 2. An odd integer n is prime if and only if there exists an integer a
satisfying the following two conditions:

i) a" ! =1modn;

i) a»=1/" £ 1 mod n for every prime r | (n — 1).

This primality test is based on the multiplicative group (Z/nZ)*, that is, on the
group H(Z/nZ) of Z/nZ-rational points on the hyperbola H : XY = 1. Something
similar works for any Pell conic:

Proposition 3. Letn > 5 be an odd integer and C : X2 —AY? = 4 a nondegenerate
Pell conic defined over Z/nZ with neutral element N = (2,0), and assume that
(A/n) = —1. Then n is a prime if and only if there exists a point P € C(Z/nZ)
such that

i) (n+1)P=N;

ii) "T'H P # N for any prime r dividing n + 1.

Of course, for both tests there are ‘Proth-versions’ in which only a part of N +1
needs to be factored.

The following special case of Proposition [3] is well known: if n = 2P — 1 is a
Mersenne number, then n = 7 mod 12 for p > 3, hence (3/n) = —1; if we choose
the Pell conic C : X2 —12Y2 = 4 and and P = (4,1), then the test above is nothing
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but the Lucas-Lehmer test. We remark in passing that Gross [3] has come up with
a primality test for Mersenne numbers based on elliptic curves.

3.2. Factorization Methods. The factorization method based on elliptic curves
is very well known. Can we replace the elliptic curve by conics? Yes we can, and
what we get is the p — 1-factorization method for integers N if we consider the
conic H : xy = 1, and some p + 1-factorization method for general Pell conics. The
details are easy to work out for anyone familiar with Pollard’s p — 1-method.

4. 2-DESCENT

Consider the Pell conic C : X2 — AY? = 4. Define a map « : C(Q) — Q*/Q*?
by

—AQ*? ifox=-2.

If P=(x,y) € C(Z) with > 0, then P gives rise to an integral point on the de-
scendant 7,(C) : aX?—bY 2 = 4, where a is a positive squarefree integer determined
by a(P) = aQ*?, and ab = A. Conversely, any integral point on some 7, (C) gives
rise to an integral point with positive xz-coordinate on the Pell conic C.

It can be shown that « is a group homomorphism, and that we have an exact
sequence

x X2 if x££ —
a(x’y):{< +2)Q2 ifw £ -2,

0 —— 20(Z) —— C(Z) N QX/QXQ_
Moreover, we have #ima = 2", where r is the Mordell-Weil-rank of C(Z), and
the elements of im « are represented by the first descendants 7, with 7,(Z) # @.
Thus computing the Mordell-Weil rank is equivalent to counting the number of first
descendants 7, with an integral point (see [§]).

The situation is completely analogous for elliptic curves E : Y2 = X (X2 +aX+b)
with a rational point (0,0) of order 2, except that here we also have to consider
the 2-isogenous curve E : Y2 = X (X2 + G X + b), where @ = —2a and b = a® — 4b.
We have two Weil maps o : E(Q) — Q*/Q*?2 and @ : E(@) — Q*/Q*?, and
the Mordell-Weil rank is given by Tate’s formula 2772 = #im « - #im @. For more
information on the descent via 2-isogenies we refer to Silverman & Tate [I1].

4.1. Selmer and Tate-Shafarevich Group. The subset of descendants 7, :
ar? — bs? = 4 with a rational point form a subgroup Sely(C) of Q% /Q*? called the
2-Selmer group of C. Next we define the Tate-Shafarevich group III5(C) by the
exact sequence

1 —— ima —— Sely(C) —— HI(C) —— 1.
In [8] we have shown that the 2-part of the Tate-Shafarevich group of the Pell conic
C: X% - AY? =4is IIy(Z) ~ CIT(k)?[2].

For a cohomological definition of Selmer and Tate-Shafarevich groups, we need
to interpret conics as principal homogeneous spaces. Every conic X2 — AY2 = 4¢
is a principal homogeneous space for C(Q); this is to say that the map

p:D(Z) x C(Z) — D(Z) : p((u,v), (x,y)) = (LEEp0, vetun),
has the following properties:
(1) p(p,N) = p for all p € D(Q), where N = (2,0) is the neutral element of C.
(2) w(up, P),Q) = u(p, P+ Q) for all p € D(Q) and all P,Q € C(Q).
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(3) For all p,q € D(Q) there is a unique P € C(Q) with u(p, P) = q.

Here Q denotes the algebraic closure of Q.

Note, however, that only those D with ¢ | A are principal homogeneous space
for C(Z), i.e., satisfy the property that for all p,q € D(Z) there is a P € C(Z) with
w(p, P) = q. Also observe that the conics D with ¢ | A can be written in the form
aX? —bY? =4 with ab = A, that is, these are exactly the first descendants.

4.2. Heights. For a rational number ¢ = “* in lowest terms, define its height
H(q) = logmax{|m/|, |n|}; note that H(0) = 0 and H(q) > 0 for all ¢ € Q. For
rational points P = (x,y) € C(Q) on a conic C' : X2 — AY? =4 put H(P) = H(z).

~

Define the canonical height h(P) by

h(P) = lim HZ'P)

n—oo on

The canonical height 1 on the Pell conic C : X2 — AY? = 4 has all the suspected
properties (and more):
(1) [A(P) — H(P)| <log4;
(2) h(T)=0if and only if T' € C(Q)ors;
(3) h(mP) = mh(P) for all integers m > 1;
(4) (P + Q) < h(P) + h(Q);
(5) the square of the canonical height satisfies the parallelogram equality

(P = Q)+ h(P + Q)? = 2h(P)? + 2h(Q)?

for all P,Q € C(Q).

In addition, there are explicit formulas for the canonical height. It is an easy
exercise to show that every rational point on a Pell conic has the form P = (z,y)
with z = L,y = 2 ‘and (r,n) = (s,n) = 1. In this case we have

A rl+[s[VA
h(P) = log 5 if A >0,
log |n| it A <O0.

The finiteness of C(Zg)/2C(Zg) and the existence of a height function implies
the theorem of Mordell-Weil.

5. ANALYTIC METHODS

5.1. Zeta Functions. Both for conics and elliptic curves over QQ there is an analytic
method that sometimes provides us with a generator for the group of integral or
rational points on the curve. Before we can describe this method, we have to talk
about zeta functions of curves.

Take a conic C or an elliptic curve E defined over the finite field F),; let N, denote
the cardinalities of the groups of IFj--rational points on C' and E respectively, where
we count solutions in the affine plane for C' and in the projective plane for £. Then

Zp(T) = exp (i Nr?)

r=1

is called the zeta function of C' or E over F,,.
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For the parabola C : y = z?, we clearly have C(F,) ~ F,, hence N, = p", and
we find

Zp(T) = exp (Zpr¥> = exp(—log(1 —pT)) = T
r=1

For the conic X2 — AY? = 4 we find after a little calculation

1
%) = T )T

where x is the Dirichlet character defined by x(p) = (A/p). The substitution
T = p~® turns this into

1
(1 —p'=*)(1=x()p~*)
For nonsingular elliptic curves over I, we similarly get
P(T)
(1-T)(1—pT)’
where P(T) = ¢qT? — a,T + 1 and a,, is defined by #FE(F,) =p+ 1 — ap.

Cp(s;C) =
ZP(T) =

5.2. L-Functions for Conics. Now we take the zeta function for each p and
multiply them together to get a global zeta function. The first factor 1/(1 — p!=*)
gives us the product

T o =cs-na-2,

1— 1-s
podd prime p

that is, essentially the Riemann zeta function.
The other factor, on the other hand, is more interesting:

o ===

is a Dirichlet L-function for the quadratic character x = (A/-). This function
converges on the right half plane Res > 1 and can be extended to a holomorphic
function on the complex plane.

Now the nice thing discovered by Dirichlet (in his proof that every arithmetic
progression ax +b with (a,b) = 1 contains infinitely many primes) is that, for every
nontrivial (quadratic) character x, L(s, x) has a nonzero value at s = 1. In fact, he
was able to compute this value:

he -2 A<,
L(l,x) = vVl

h-’”;g ifA>0

where x(p) = (A/p), and where w, A, h and € > 1 are the number of roots of unity,
the discriminant, the class number and the fundamental unit of Q(v/A).

The upshot is this: if A > 0, the group C(Z) has rank 1; by using only local
information (numbers of F,r-rational points on C) we have constructed a function
whose value at 1 gives, up to well understood constants, a power of a generator of
C(Z), namely the h-th power of the fundamental unit.
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The functional equation of Dirichlet’s L-function allows us to rewrite Dirichlet’s

formula as
2hR

lim s™" L(s,x) = =~
where r =0 and R=1 for A <0, and »r =1 and R = loge for A > 0.
Observe that the evaluation of the L-funtion (which was defined using purely
local data) at s = 0 yields a generator of the free part of the group C(Z) (which is
a global object)!

5.3. L-Functions for Elliptic Curves. The really amazing thing is that exactly
the same thing works for elliptic curves of rank 1: by counting the number N, of
F,--rational points on E, we get a zeta function Z,(T") that can be shown to have
the form
P(T)

(1=T)(1 —pT)

for some polynomial P(T') € Z[T] of degree 2 (if p does not divide the discriminant
of E). In fact, if pt E we have P(T) = 1 — apt + pt?, where a, = p+ 1 — #E(F,).

Put L,(s) = 1/P(p~*) and define the L-function

L(s,E) = [[ Ly(5)-

Zp(T) =

Hasse conjectured that this L-function can be extended analytically to the whole
complex plane; moreover, there exists an N € N such that

A(s, E) = N*/2(27)~°T'(s)L(s, E)

satisfies the functional equation A(s — 2, E) = £A(s, E) for some choice of signs.
For curves with complex multiplication, this was proved by Deuring; the general
conjecture is a consequence of the now proved Taniyama-Shimura conjecture.

6. BIRCH-SWINNERTON-DYER

6.1. Birch and Swinnerton-Dyer for Elliptic Curves. The conjecture of Birch
and Swinnerton-Dyer for elliptic curves predicts that L(s, E') has a zero of order r
at s = 1, where r is the rank of the Mordell-Weil group. More exactly, it is believed

that

lim (s—1)"L(s; E) = - #IU(E/Q) - R(E/Q) - Hcp,

s—1 (#E(Q)tors)2
where r is the Mordell-Weil rank of E(Q), Q = ¢ the real period, III(E/Q) the
Tate-Shafarevich group, R(E/Q) the regulator of E (some matrix whose entries
are canonical heights of basis elements of the free part of E(Q)), ¢, the Tamagawa
number for the prime p (trivial for all primes not dividing the discriminant), and
E(Q)tors the torsion group of E.

6.2. Birch and Swinnerton-Dyer for Conics. We now want to interpret Dirich-
let’s class number formula in a similar way. Let & = Q(v/A) denote the quadratic
number field associated to the Pell conic C : X2 — AY? = 4. Then we conjecture
that there is a cohomological definition of the Tate-Shafarevich group III(C) whose
2-torsion coincides with the group ITl5(C) defined above, and that we have

ITI(C) ~ CIT (k)2
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If we (preliminarily) define the Tamagawa numbers by

{2 if p | A,
Cp:

1 otherwise,

then Gauss’s genus theory implies that
[ =217 (k) - C1F(R)?).

Thus if we put Q = 1, then Q- #III(C) - [T ¢, = h™ equals the class number of
k in the strict sense, hence is equal to 2% - h, where u = 1 if Ne = +1, and u =0
otherwise.

If A > 0, let n > 1 denote a generator of the free part of C(Z); then the regulator
of C equals h(n) = logn. Now we find R(C) = 2!=*R, hence Q-#II1(C)-R(C)-[] cp =
h*logn = 2hR; this also holds for A < 0 if we put R = 1.

Finally, C(Z)tors is the group of roots of unity contained in k, and we find

2hR Q- #I(C)- R(C) - [1c,
w N #C(Z)tors

in (almost) perfect analogy to the Birch-Swinnerton-Dyer conjecture for elliptic
curves.

In fact, the analogy would be even closer if we would replace #C(Z)iors by
(#C(Z)1ors)? and adjust the formulas for ¢ and c3 for the two Pell conics with
nontrivial torsion; this would also allow us to put Q = 1.

7. SUMMARY

The analogy between Pell conics and elliptic curves is summarized in the follow-
ing table:

H GL; \ Pell conics \ elliptic curves
group structure on || affine line affine plane projective plane
defined over rings rings fields
group elements S-units S-integral points | rational points
group structure 7)2 D 7#5 | C(Zs)tors © LT EQ)ios ®Z"
associativity clear Pascal’s Theorem | Bezout’s Theorem
factorization alg. p—1 pt1l ECM
primality tests Lucas-Proth | Lucas-Lehmer ECPP
111 1 ClIt (k)2 ?

L-series Z quadratic field modular form

Moreover, cyclotomic fields are for Pell conics what modular curves are for elliptic
curves, and cyclotomic units correspond to Heegner points. The analog of Heegner’s
Lemma (if a curve of genus 1 of the form Y2 = f;(X), where f; is a quartic
polynomial with rational coefficients, has a K-rational point for some number field
K of odd degree, then the curve has a rational point; cf. [4]) is due to Nagell [9],
who proved the same result with f; replaced by a quadratic polynomial fs.
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8. QUESTIONS

Although the arithmetic of conics is generally regarded as being almost trivial,
there are a lot of questions that are still open. The main problem is a good definition
of the Tamagawa numbers in the case of conics, a cohomological description of the
Selmer and Tate-Shafarevich groups, and the proof of ITI(C) ~ CI* (k)2.

The next problem is the analytic construction of generators of C(Zg) if S # @.
This suggests looking at the Stark conjectures, which predict that we can construct
certain units (actually S-units) in number fields. It seems, however, that we cannot
hope to find “independent” elements (see [13]).

On a simpler level there’s the question whether iterated 2-descents on Pell conics
provide an algorithm for computing the fundamental unit that is faster than current
methods. And how does 3-descent on Pell conics work?

We can also think of generalizing the approach described here: the groups GL;
and the Pell conics are special norm tori in the theory of algebraic groups, and
there’s the question of how much of the above carries over to the more general
situation. The norm-1 tori associated to pure cubic fields can be described geomet-
rically as cubic surfaces S; do the groups of integral points on S admit a geometric
group law? It is known that the groups of rational points on cubic surfaces coming
from norm forms satisfy the Hasse principle; is there a connection between the 3-
class groups of these fields and the Tate-Shafarevich groups on S defined as above
as the obstruction to lifting the Hasse principle from rational to integral points?

On the elliptic curve side, there are a few questions suggested by the analogy
worked out in this article. For example, is there a natural group whose order

~

equals #III(E) - [[¢,? Recall that exp(h(P)) is algebraic for rational points on

o~

Pell conics; are there meromorphic functions F' such that F'(h(P)) is algebraic for
rational points P on elliptic curves, at least for curves with complex multiplication?
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the set ¢, ¢,, @3, . . . of all homomorphisms of G into finite groups. We can thus
enumerate all images ¢(w) where w is a word on the.generators of G. If some
¢dw) # 1, then w # 1, and we put w on the list of words not equal to 1. Since G is
residually finite, if w is any word of G not equal to the identity, there exists some
¢; with ¢ (w) # 1. Thus we list all words not equal to I in . This concludes the
proof of the theorem. [

V. Dyson (1974) and S. Meskin (1974) have exhibited finitely generated,
recursively presented, residuaily finite groups with unsolvable word problem.
We next turn to a theorem of Marshall Hall (1949).

Theorem 4.7. Let G be a finitely generated group. Then the number of subgroups of
G having any fixed finite index n is finite. If H is a subgroup of finite index in G,
then H contains a subgroup K characteristic in G with finite index in G.

[0 Letn bea positive integer. For each subgroup H of index n, choose a complete

set ¢, ..., ¢, of representatives of the right cosets of H# in G with ¢, = 1. Now
G permutes the cosets He; by multiplication on the right. This induces a homo-
morphism 4 from G into the symmetric group, S,, of permutations of {1, ..., n}

as follows. For g € G, Y 4(g) is the permutation which sends i to j if Hc,g = Hc;.
Since He, = H, yz(g) fixes the number ! if and only if g e H. If H and L are
distinct subgroups of index #, there is an element g in one subgroup but not the
other. Thus ¢5(g) # Y.(g) and ¥ and y, are distinct. Since G is finitely generated,
there are only finitely many homomorphisms from G into S,, and the number of
subgroups of index n is thus finite,

If A is a subgroup of finite index » in G, let H,,..., H, be all the distinct
subgroups of index n. Let K = ()L, H,. Then K is of finite index since it is the inter-
section of finitely many subgroups of finite index. Let « be any automorphism of G.
Since the image a(H;) of each H, is again a subgroup of index n, & permutes the H,.
Thus

oK)= (Yie a(H) = K
and X is characteristic in G. [

If G is any group, Aut(G) will denote the group of all automorphisms of G.
The next theorem is due to G. Baumslag (1963).

Theorem 4.8. If G is a finitely generated residually finite group, then Aut(G) is
also residually finite

O Let A = Aut(G), and let 1 # a € A. Then there is an element c e G such that
a(c)e™! = c* # 1. Since G is residually finite, there is a subgroup H of finite index
in G with c* ¢ H. By the previous theorem, H contains a characteristic subgroup X
of finite index in G. Since K is characteristic, we can define a homomorphism
Y1 A - Aut(G/K) by

¥(B) [Kg] = Kf(g).
Now Aut(G/K) is finite and () # 1. O

Since free groups are residually finite, the theorem shows that the automor-
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1: Groups of matrices and bilinear mappings

1.1. Notation. Modular functions and forms will first be defined in
chapter 4. In this chapter we study the groups on which these
functions are defined, We write:

C for the set of all {finite) complex numbers, with the usual
topology.

R for the set of all {finite) real numbers.

Q for the set of all rational numbers.

Z for the set of all (rational} integers.

Z" for the set of all positive integers.

H={z:zeC, Im z >0}, the upper half-plane.

C =Cu{oo), the extended complex plane. This is the one-point
compactification of C. Inthe topology on C, aset A isopenif either
(i) A isan opensubsetof C,or (if)c0€ A and C-Ais compactinC.
With this topology, C is homeomorphic to the two-sphere, i.e. to
the Riemann sphere {(x, y, z)e R x* +y*+ 2> =1}.

R =R {0}, the one-point compactification of R.

H=HUR.

P=0Qu{x}

H=HUP.

Other subsets of C will be defined later.

We write throughout f

N S BT

fora, b, c,d, a,B, v, 8€C and put
|T|=det T=ad ~ bc.
Let
@={T:a,b,c,deC,T|=1}, - (1.1.2)
and

Qﬂ{Tza,b,c,deR,]le—"l}. (1.1.3)
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Then @ is a group under matrix multiplication with the identity

element
It ‘0}
I—[O .t (1.1.4)

and @ contains {2 as a subgroup. In group theory the groups @ and
{2 are referred to as the special linear groups SL(2,C) and
SL(2, R), respectively. It is easily verified that, for each T'e @,

r‘z[ a 'b]. (1.1.5)
- a
The subgroup consisting of 7 and

-1 0]

Iw[ 0 —1 (1.1.6)

is denoted by A; it is the centre of @ and {2,
For each T € & we write

trT=a+d=2cos br,

where 8y is any complex number for which this equation is valid.
Then it is easily shown by induction that, forany g€ Z”,

T =FT~F,.d, {(1.1.7)
where
sin gr
F, = wser— 1.1.8
N sin 61‘ ( )

This is a polynomial of degree g — 1 in cos #r and so is defined even
when sin &+ = 0. We note also that

tr(T7) =2 cos qfr. (1.1.9)
Further, if 6 = wk/q for some integer k, then
T ={(~1)*1. (1.1.10)

With each Te @ we associate a bilineart mapping, which we
also call 7, defined on € by

az+b
z

cz+d (zeC),

w=T(z)=

t Other terms used are linear, linear fractional and Mdbius. No confusion should
arise with the use of the word bilinear in muhilinear algebra.

g T
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and we also, for brevity, write Tz in place of T(z). For example,
T(-d/c)=00 and Two=a/c.

These relations hold even when ¢ =0, for then a and d are
non-zero, so that —d/c and a/ ¢ both mean c0; this is a consequence
of the rules

Z
z+oo=00+z =00, 5520 (zeC),

zoO =00z = 00, -g=00 (z e C—{0}).

The mapping T is a bijective mapping of € onto itself, the
inverse mapping being given by
dw—b

- T -
z=T"{w) .

if I is any subgroup of @, the mappings T defined by matrices Tel’
form a group I under composition as group operation; i.e., if
Sel Tel, then (ST)(z) means ${T(z)}. This is easily checked.
For, by the definitions of § and T,

aa+Pc ab +ﬁd}

Srg[ya +8 yb+éd

{(1.1.1DH
while
az+b
o+
S{T(2)} = cz+td " _(aa+Bc)z+(ab+pBd)
az+b (ya+8c)z +(yb+8d)
Yt 8
cz+d

The group [ is called the inhomogeneous group associated with I',
which is called a homogeneous group.
Let ¢ denote the mapping:

¢ : matrix T bilinear mapping 7.

Then the above remarks show that ¢ is a homomorphism of ¢
onto @, Let I" be a subgroup of @, so that ¢ is a homomorphism of
I"onto " The subgroups " that we consider will usually act not on
the whole of €, but on some subsét B. We suppose that D is a subset
of Csuchthat I'D=D,i.e. TD=Dforall Tl Wesuppose further
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that [J contains more than two points; usually D will be €,C,Hor
H.
The identity mapping in [is w=2z (zeD), and we have
az+b

=z forallzeD
cz4+d

T(z)=

if and only if az + b =cz*+ dz for all z € D. Since [} contains more
than two points, this gives

b=c=a—-d=0,

ie.a=d=21b=c=0,sothat T=x=] Thus the kernelof ¢ is A
if —Fel andis I if —I£T. Hence we have

f=r/ia (t-Ie), ['=r Gi-1£). (1.1.12)

In particular, O =0/A and (}=1/A. The groups O and 0 are
referred to in group theory as the linear fractional groups LF(2, C)
and LF(2, R), respectively.

When —I€ 1" we can adjoin —I to I, obtaining an overgroup
[(=I'A = Al of I having I as a subgroup of index 2, and then

[=r=iyA. (1.1.13)

By writing I” for the homogeneous group and I for the
associated inhomogeneous group we indicate that we regard the
latter as being determined by the former. This point of view is
especially convenient when we are concerned with algebraic prop-
erties of groups and, in particular, with multiplier systems. On the
other hand, a different point of view can be taken when analytic
properties are under discussion. For we shall be concerned with
classes of functions f defined on H for which the quotient
f(Tz)/f(z} is the same for each member of the class, when T
belongs to a certain given group of bilinear transformations. Since
this quotient takes the same value for —T as for T, it is often
convenient to assume that —I belongs to the associated matrix
group. Accordingly, if we start with a group f* of bilinear transfor-
mations, we may define the associated homogeneous group I to
consist of all matrices T such that the associated bilinear transfor-
mation belongs to r it then follows that — Te I"whenever Te I It
is easily checked that I" is in fact a group. (Authors who adopt this
analytic point of view commonly write I for the inhomogeneous
group and I for the homogeneous group.)

oD, 2 Gk
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We now introduce a notation that we shall find useful when
dealing with coset representatives. Let S be a set closed under an
operation, which we call multiplication, and let A and B be subsets
of S. Then we write, as is customary,

AB={xeS:x=ab,ac A, be B}.

An element x € AB may be expressible in more than one way as a
product ab fora € A, b € B.If, however, each x € AB is expressible
in exactly one way as a product ab for a € A, b € B, we write

AB=A"-B.

Itis easily verified that A - (B - ()= (A - B) - C, provided that one
side is defined, in which case the other is also.
If A isa finite set, we write |4 | for the number of its elements,
Now suppose that I, < I, < @&, I'; and I, being subgroups of &.
Then the statements

F;ﬂrz‘g?, F;z.(f‘ITZ

are equivalent to the statements that & is a set of right coset
representatives of I'; modulo I, and that % is a sct of left coset
representatives, respectively. We call R aright transversal, and £ a
left transversal, of I'; in I, 1f |&] is finite, so is L.¥] and

|R| = £ =[1:17],

theindexof I, in . Note that,if Te & and —I e I, then —T& &.

Similar notations can be used with inhomogeneous groups. We
note alsothat, if~JIel,clc®@and [ =T, ..@,thenf‘l=ﬁ2 . ?f?,
where there is a one-to-one correspondence between matrices in
& and transformations in & ; for this reason we shall usually write
notonly =1, R butalso [, =1, &

Theorem 1.1.1. LetI's and I, be subgroupsof @ with I < I',. Then,
ifNy=1%-R and S is any memberof I'), I'y =T - (RS). A s:milar

result holds in the inhomogeneous case.

Proof. For I''=1'S=(I",- R)S = I', - (RS).

Theorem 1.1.2. Let I'; be a subgroup of finite index y in a group I'y,
and let S be a fixed member of I'y. Then there exist a finite number of
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elements L., Ls, . .., L, say, in I'y and m disjoint sets
F=\ LS : 0=k <o} (Isi=m),

where
go=min{k:S*e L' INL,keZ"}, (1.1.14)
such that
u=otoyt o, (1.1.15)
and |
r=r,-Us.

Moreover, if S has finite order o, then o, divides o for 1si<m.
Also, if Iy isnormal in Iy, then g, = oo, say, for L =i=m, and so

= Hig. {1.1.16)

Proof. Take any L, e[y and define o, by (1.1.14); since Li'ILL,
has finite index u in [T, o, is a finite positive number and the
members of &, belong to o, different right cosets of I in I If
u = gy, this completes the proof and m = 1 in this case. Ifpu>a, we
take any L, not belonging to %, and define o, by (1.1.14). As
before, the o, elements L,5* (0 <k <o) belong to different right
cosets of 1. Moreover L,S*g I',%; for if L,S* e I,¥, then Ly €
9,87 = I',¥,, which is false. If & = g, + o, the theorem follows;
if & >0y +0,, we take an Ly & (¥, U F;) and proceed similarly.
Since g is finite and o; >0 for each i, there exists a positive integer
m such that (1.1.15) holds and the process then terminates, giving
the required result. The two final sentences in the enunciation are
immediate consequences.

Note that, when L, L, ..., L, (r <m) have been chosen, L,,,
may be any member of Iy not in I\ _f.,¥. Also, although the

elements L., ..., L, are not uniquely determined, the integer m

is the same and so are the numbers ¢y, o1, . . . , 0, (in some order)
for all choicesof L,,..., L.

Theorem 1.1.3. Let I', be a normal subgroup of finite index p in a
group I'y, and let S be a fixed member of I'. Let o be the least positive

1.2 The modular group 7

integer such that $° € I'; and write

F=| fS*: 0=k <o}
Then there existm = pfo distinctelements Ly, L,, . .., L. of I', such
that r=9r.% (1.1.17)

where & =\_KL: 1 =i=<m}. Also, if I't and I'} are the subgroups of
I'; generated by S and S°, respectively, and I, =13 - R, then

=1ty #-% (1.1.18)

Proof. The proof of {1.1.17) is similar to that of theorem 1.1.2. The
normality of I, in I'y comes in when we infer from

SLLi=S'TiL;, (O=sl<k<o;T, Tiel,),

that L,e 5L, and so L; =L, I =k and T, =T,. We then have,
since [ ¥=%-T7%,

N=%-1,$=%-IY R-FL=I't- R &
which is (1.1,18).
We note that, by (1.1.11),

tr ST=tr TS {1.1.19)
whenever § and T belong to €. In particular, we deduce that
trL'TL=uT (1.1.20)

whenever L and T belong to @; i.e. conjugate elements have the
same trace.

If A and B are elements of a group, we write (A, B) for the
subgroup generated by them, and use similar notations for any
number of generators.

We conclude this subsection by introducing another convenient
notation. We shall write

x.=ly or y=:X

to denote that x is a new symbol, whichisdefined tobe equalto y; y
will often be a rather complicated expression.

1.2. The modular group. We write
F(1y:={Tefd:a, b c,del}. (1.2.1)
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It follows from (1.1.5, 11} that this set of matrices is a group, and it
is known as the (homogeneous) modular group.t The correspond-
ing group of mappings is denoted by 1(1) and is called the
(inhomogeneous) modular group. By (1.1.12), 1‘“(1)51“(1)//1.
Alternative notations are

I'(H)=SL2,2), [(1)=LF@,2).

The following special matrices belonging to I'(1) occur with

great frequency:
fr1 _fo -1 ‘_{1 0}
U"{o 1}’ "{1 o]’ Wi=ly 4 (22

The corresponding mappings are given by

Uzr=z+4+1, Ve=—1/z, Wz=—2-

z+1
We note that, for any ke Z,
1 &
U= [O 1]. (1.2.3)
Further,
VeI PP=-, (1.2.4)
where
0 -1
P.= VU=[1 1]. (1.2.5)
Also
p?= [“i "”é], W= UVU. (1.2.6)

The mappings V and P therefore have periods 2 and 3 respec-
tively.

We denote by I'y, the subgroup of I'(1) generated by £U,; it
consists of all matrices +U” (n € Z). The corresponding mappings
are the translations

w=z+n (nef).

t Gerrnan: Modulgruppe.,
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We write similarly, I« (k € Z") for the group generated by +U*;
the corresponding mappings are the translations

w=x+k (neld).

We now consider the group I'(1) more closely. Let ¢, d be any
two coprime integers. Then we can find integers a, & such that
ad—bc=1; i.e. we can find a Te I'(1) with second row [c, d].
Further if a’, ' is any other pair of integers with a’'d —b'c =1,
then, by elementary number theory,

a=at+nc, b =b+nd

for some n € Z, and conversely. Thus the only matrices in (1) with
second row [c, d] are the matrices

T'=U"T (nel).
Hence, if § is any member of the right coset I, T of I'y, in (1), then
[y, 8]==[c, d]}, and conversely. We deduce

Theorem 1.2.1. Let R be a set of matrices T € ['(1) with the property
that, for each S € I'(1) there is exactly one T € R such that {c,d]=
+{v, ). Then

I'Y=rIy R (1.2.7)

Conversely, if (1.2.7) holds, then R has the property stated. A
similar result holds for the inhomogeneous groups f (1), [, and a set
of mappings R with corresponding properties.

The next theorem shows that if 7 is any element of I'(1) we can
find a conjugate element L' TL of a certain simple form.

Theorem 1.2.2. If T I'(1) and tr T =1, then there existsan L = I'(1)
such that, if S=L"'TL, then

la—tl=ivl, I8-=i), bi=lgl 3yi<le-dl

where S is given by (1.1.1). Further, L. belongs to the subgroup
generated by U and V. '
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Proof. Forany ne Z

SRR ¢ {a b][l n}
Tu=UTTU “[0 l]c ailo 1

_‘{a—nc b+n(a—a')—n2c]:'[a, bl]
- c d+nc ) 1 d; ‘

Note that tr T, = t. We choose n to make
la; =1l =s(a —d)— nc| = |d, =3t =lc]=Heil;

this is possible even when ¢ = 0, since then a =d. If |c,|=<1b,] we
stop the process here; if {c,| > {b,| we form

0 1i[a; &0 -1 d, -c
=verv=[ gl B )=l
TZ TIV -1 0 (] dl 1 0 _‘b! a,
2 4]
' Ca dz
and note that we then have |c,] <l¢,| and tr T, =t. We now form
T =U""T,U™, choosing m as above to make

{03“’%1" = !da‘“%fl 51[‘331 m%lczi 2%]51],

and stop the process here if Jc;] <|ba[; if not, then [c5| >1b;| and we
proceed as above, obtaining a matrix T, with jc.| <|es| < lcy|. The
process must stop after a finite number k of steps when we reach a
matrix § = Ty, with
la~it]=[6 -4|=dly| and |y|=Bl.
Hence
|1~ 4] =|(cr +8)* —4 = 4By + (a — )|

= 4iBly|~la - 8F =ay*—y*=37".
Theorem 1.2.3. Let T e I'(1). If Tis of finite order then T'is conjugate
to one of the matrices
+],+V, xP, +P?
and |tr T| < 2. Conversely, if |tr T| <2, then T is conjugate to one of

these matrices or else T is a conjugate of *U* for some k € Z.

Proof. From the inequalities in theorem 1.2.2 we get the pos-
sibilities shown in table 1 for § when |¢|<2. If >2, we can put

1.2 The modular group 11
Table 1
(=a+8 a B y & s
0 0 =F1 1 0 :H{ ,

0 1 p-vipty

1 1 FhEl g e viey

0 -1 -P, VPtV

-1 o1 FLoEb g pyipy
2 1 k0 1 U*
-2 -1 -~k 0 -1 - ¥

¢ = 2 cosh @, for some 8 >0, so that, by (1.1.9),
tr(S§9) =2 cosh g8 >?2

for all ge Z*. It follows that, if |f|>2, then S?# +] for allg € A8

Theorem 1.2.4, I'(1) is generated by U and V; every element
T e I'(1) can be written in the form

T=U*VU"V .- VU™ (1.2.8)

where g, € Z (0=i =< n); this representation is not unigue.

Proof. Let TeT'(1) and take S=L"'TL as in theorem 1.2.2. By
theorem 1.2.3, we may suppose that |t]>2, where ¢ =tr T. Then
S¢ Iy, and so we can choose g € Z so that, if £, = tr LS,

0] = e+ qvl=2lyl;
this is possible since y # 0. Then
|| =3yl =3l -4 <],

and some transform of U%S will satisfy the inequalities in theorem
1.2.2. In this way we can derive an element S’ of trace {', where
I} = 2, and where §' is derived from T by multiplication on left and
right by powers of U and V. Since, by table 1, §"is also a prod 1ct of
matrices U and V, the required result follows. The representation
is not unique, since -

P =(VU)=1.
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Theorem 1.2.5. I'(1) is generated by V and P?; every element
T e I'(1) can be written uniquely in the form

T=(=1YPP VPV ... VP (1.2.9)
where
0=r=1, 0=p=2 O=i=n), p>0 O<i<n).
(1.2.10)
(When n =0, the expression on the right-hand side of (1 2.9) is
(—1yp*)

Proof. 1tisclear from (1.2.4, 5, 8) that T can be written in the form
(1.2.9) subject to the conditions (1.2.10). The representation is
unique if we can have

I=(=1yP™ VP ... VP (1.2.11)

only when n = r = py = 0. We call the right-hand side of (1.2.11) a
word of length n and suppose that (1.2.11) holds for some n >0 and
that n is the least positive integer for which this holds. Then

[=(—1y VP VP . .. YP2om (1.2.12)
and p, +po= 0 (mod 3). For if p, + p,= 0 (mod 3), then n =2 and
I=(=1y"'P"V - VPP,

which is a word of shorter length n —2; hence n =2 and so p, =0,
which is false, Since P* = I, we may assume that p, +p,=1o0r2,so
that we deduce from (1.2.12) that £ can be represented as a
product of n factors each of which is either

11 1 0
U - or VP =W L
(1.2.13)

Since the entries in U and W are all non-negative the same is true
of the product, which must be +1. But, if either

I=US or I=WS§,
then S has one negative entry, and this gives the desired contradic-
tion.

1t follows from theorem 1.2.5 that

Fity — /P2 W\ /P YN (17 14y

1.2 The modular group 13

with the notation introduced at the end of §1.1. Further, since
P* = —P, itis clear that theorem 1.2.5 remains true, possibly with a
different vatue of r, if each exponent 2p;, (0=i=n)in (1.2.9) is
reptaced by p; (0=i=n).

Since the matrices T and —T give rise to the same bilinear
mapping, it is clear that we have

Theorem 1.2.6. 1'(1) is generated by the mappings V and P, which
have orders 2 and 3, respectively; i.e.

f()y=(p, V). (1.2.15)
Further, every mapping Tof {'(1) can be written uniquely in the form
T=PrVPr ... VpPm (1.2.16)

as a composition of mappings, where
0=p,=2 (0sisn), p>0 (0<i<n) (1.2.17)

Theorem 1.2.6 can be expressed by stating that (1) is the free
product of the cyclic groups (V) and (P). We use an asterisk (¥} to
denote a free product, so that we have

[ =(V)*(P). (1.2.18)

The integer n occurring in (1.2.9) is called the length of the
group element or word T and we wrile Ty =n Thus (T)=0if
and only if T= P? for some integer q.

We conclude this section by investigating the automorphism
groups of I"(1) and f(l); see Hua and Reiner (1951). We write
Aut (G and Inn G for the groups of all automorphisms and all inner
automorphisms, respectively, of a group G. We also recall that
Klein’s four-group is the direct product of two cyclic groups of
order 2.

Theorem 1.2.7. Let s be an automorphism of I'(1). Then i is
determined uniquely by its action on the generators V and P, and we
must have, for some L e I'(1)

g(V)=L""V*L, (P)=L 'P’L, (1.2.19)
where = 21, v = *1. Accordingly, Aut I'(1)/Inn I'(1} is isomor-
phic to the four-group.

Proof. Clearly, if € Aut I'(1), then, for some L, L,e I'(1),
VY= T THVEL L PY = TP
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by theorem 1.2.3, where u =1, » =+1. By applying an inner
automorphism to ¢ we obtain an automorphism ¢ € Aut /(1) such
that

e(Vy=L7'VEL, @(P)=P" (1.2.20)

for some L e I'(1). Further, we may assume either that L. =1, or
else that

m:=l{L)=1,
in which case L has the canonical form
L =pypay... yphn, (1.2.21)

where 0 <go=2 and g, =0; for V* and P* are unaltered when
conjugated by V and P, respectively. Note that [(L™'VL)=
2m+1,

Now take any T'eI'(1) as in (1.2.9), so that n =I(T). From
(1.2.9, 20, 21) we can work out ¢(7T) and express it in canonical
form. We find that

He(TH=n(2m+1).
From this it is clear that ¢ is a surjection if and only if m =0, i.e.
L =1 The theorem follows.
Note that, when p = —1, v = 1, we deduce from (1.2.19) that, for
all TeI'(1),
(D) =(=1)PL'TL forsomeLel(1). (1.2.22)

Write
1 0
J= [ } 1.2.23
0 -1 ( )
so that J is its own inverse and does not belong to . Note that
f“‘TJz[ ¢ “b]. (1.2.24)
- d
and that
JWIi=—V, JPI=VPV. (1.2.25)

We now deduce immediately the following theorem from
theorem 1.2.7.

1.3 The subgroups I, I, I' and I''(1) 15

Theorem 1.2.8. Aut (1) = (J) Inn [(1). Thus Aut Fayn F()is
a cyclic group of order 2.
In fact, if ¢ € Aut (1), then, for each T'e [(1),

W(D=L""TL or y(Ty=J"L7'TLJ
for some fixed L € [(1).

In conclusion, we note that the automorphism

_{d c]
THT'W[IJ a

is an outer automorphism, since
T ={VH7'T(V]).

Further, the outer automorphism T J ' TJ is closely associated
with the non-analytic map

2> J¥z) =3, {1.2.26)
where the bar dehotes the complex conjugate. For

az—b

I T =T T =

1.3. Thesubgroups I, I, ™ and I'(1). Let T € I"(1), and suppose
that T is expressed as in theorem 1.2.5. We define

h(Ty=n+2r, p{TV=potp+---+p. (1.3.1)
It then follows from (1.2.4) that, forany T,, T, I'(1),
T, T)=h(T,)+h(T;)(mod 4) (1.3.2)
and
p{T T2)=p(T\)+ p{T,)(mod 3). (1.3.3)

Thus h and p are homomorphisms of I'(1) onto the additive groups
of residue classes modulis 4 and 3, respectively, The kernels of
these homomorphisms, namely

:={T: Te '), K(T)=0{mod 4)} {1.3.4)
and

I*={T: Tel'(1), p(T)=0 (mod 3)}, (1.3.5)
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are therefore normal subgroups of I'(1) of indices 4 and 3, respec-
tively. We also write

r={T: Te (1), h(T)=0 (mod 2)} (1.3.6)

sothat ™ ¢ I < I'(1), and I'? is a normal subgroup of I'(1) of index
2.

From (1.2.9) and the definitions of the three subgroups it is
easily seen that I'? is generated by P and

P:=V"'PV= [; "(1)]; | (1.3.7)
thus
I =(p, P,).
Similarly,
I ={pP? P, (1.3.8)
and
P =(V, V,, V), (1.3.9)
where |
v,:=P-‘VP=PZVP‘=[’i "ﬂ
(1.3.10)
V2:=P'2VP2=P“VP2=[—; 'i :
Note that —I belongs to I™ and I'? but not to I'™*. Thus
I*=r?/A.
It is clear from theorem 1.2.5 that
T = (P = {P3}), (1.3.11)

We now consider the commutator group (1) of I'(1). This
group is generated by the commutators

[S, T):=8Ts'T", (1.3.12)
for 8, Te I'(1). We prove

Theorem 1.3.1. The commutator group (1) is a free group of index
12 in I'(1). I'(1) has rank 2 and is generated by UW and WU.

1.3 The subgroups I'?, I'* ' and 1'(1) 17

Further I'(1) =17 1", 5o that TeI"(1) if and only if
MTY=0{mod4) and p(T)=0(mod3). (1.3.13)

The factor group I'(1)/I"(1) is a cyclic group of order 12 and is
generated by the coset I'(1}U. Also, writing I'" for I''(1), we have

—-lel"U®, Vel'U® Pel'UY™ Wel'U
(1.3.14)

In fact,
Ut=-[UW,(WU)™'].
Finally,
F()y=rre, aend F)y=In~I"

Proof. For any S, T e I'(1) it follows from (1.3.2, 3, 12) that
h{{S, ThH=0(mod 4), p(S, TD=0(mod 3).
It follows from this that every T'e I''(1) satisfies (1.3.13).
Conversely, if Te I'(1) and T satisfies (1.3.13), we canexpress T

in the form (1.2.9), where (1.2.10) holds. Write

Gn=potprt - 4p, (O=m=n).
Then n is even and it is easily verified that

T=(P, VIV, PIP™, VILV, P [P, VIV, P
so that Te I"(1). Now
[V, P1=[V, P]=[P", VI = UW

and
[V, P1=[P?, V]''= WU,

so that I(1) is generated by UW and WU.

From these facts it is clear that /(1) is a free group of rank 2
having UW and WU as generdtors; for otherwise we could express
I as a product of the form (1.2.9) with n >0, and this is impossible.
The index of 17(1) in (1) is 12 since each coset corresponds to a
different pair (h, p) of residue classes and consists of those T'e I'(1)
for which

h(T)=h (mod4) and p(T)=p (mod3).
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In fact

)=y a,

where & consists of the 12 matrices P V" (0=p <3,0=<h <4},
If we use ~ to denote the equivalence relation of belonging to
the same coset of I"(1) in I'(1), we deduce from

V=-UU7? V]V, U]
that —I~ V?~U®, V~U° P~VU~U" and W~ WUU "'~
/7. In fact we have &
PRVE U (0=p<3,0=<h<4).

Finally, it is obvious from the earlier part of the proof that
W=~ and so I'()=I"n1". Also I'(1y=0°r* since
I°T™ contains the generators V and P7.

We now state the corresponding results for the associated
inhomogeneous groups. For this purpose we use the results already
obtained, together with (1.1.12, 13).

Theorems 1.3.2. The associated normal inho}nogeneous groups
have the following properties:

fe=f=py«(Pd, [M=r, [[(1):[]=2, (1.3.15)

[P=(Vys(vys(vy), P=r/a, [F1):]=3, (1316)

Fry=rnfr=rq, [FO:£ol=s, (1.3.17)

fay=rr. (1.3.18)
The factor group F(1)/ (1) is a cyclic group of order 6 generated by
the coset containing U.

We conclude by giving alternative definitions of I, I and [(1).
For this purpose we define

Q:=[W, U]=V£P=[(: ';] (1.3.19)

Theorem 1.3.3. For v =2, 3 and 6 define
G ={Tel1):Q7'TQ=+T (mod»)}.  (1.3.20)
Then G*=TI?%, G*=I* and G°*=I(1).

1.4 The level of a subgroup; congruence subgroups 19

Proof. G? and G* are certainly subgroups of I'(1) and are proper
subgroups since they do not contain U. Further, G contains the
generators P and P, of I'?, while G contains the generators V, V,
and V, of . We deduce that G*=1" and G*=TI". Accordingly

G =G*nG*=I"nI"*=1"(1).

1.4. The level of a subgroup; congruence subgroups. Let " be any
subgroup of I"(1), not necessarily of finite index. For each L e I'(1),
define 1, to be the least positive integer such that

UreLlL™. (1.4.1)

When I has infinite index in (1), no such finite positive n, need
exist and we put n, =00 in this case; on the other hand, when I has
finite index in I"(1), n, always exists and is finite. Consider the set
{n.' L € F(1)}. If the numbers in this set have a finite least common
multiple n, we call n the levelt of I' and write

lev I =n. (1.4.2)

In all other cases we put lev "= 00,

In particular, lev I is always finite when I has finite index in
I(1), since then I has only a finite number of conjugate subgroups
in I'(1). When (1.4.2) holds for finite n we have

UrellL™" forall Lel'(1). (1.4.3)
We now write 4(n) for the normal closure of the cyclic group
() ie. A(n)=(L"'U"L: L e (1)) (1.4.4)

and is the smallest normal subgroup containing (UJ"}. Clearly n is
the smallest positive integer such that d(n) < I

We make exactly similar definitions for inhomogeneous groups.
'[hus, if [*is any subgroup of f'(l), lev [ is defined and the group
A{n) is the normal closure of the group (IJ") of mappings. By way
of example we note that

lev (1) =lev (1) =1, levd(n)=levd(n)=n,

and lev{U")=00 for both homogeneous and inhomogeneous
groups (U"). Also, by theorems 1.3.1, 2,

lev I"(1)=12, lev [ (1)=6.

t German: Stufe.
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An important class of subgroups of the modular group consists
of what are called congruence subgroups. If § and Te (1), we
write

S =T (mod n),
where n € Z°, if and only if
a=q, B=b y=c¢ and &=d(modn).
It follows at once from (1.1.5) and (1.1.11) that if
S:=8,(modn) and T,=T,(modn),

then

Ti'=T;'(modn) and S§,T,=8§,T>(modn). (1.4.5)

We write
I'in):={Se'(1}:S=1I(mod n)}; (1.4.6)

this agrees with the previous definition when n = 1. Then I'(n) is a
group; for if $=T=1 (mod n), then

ST '=1"=](mod n).
We also write .
F(n):=AI(n)={Sel(1):S==xI (mod n)}, (1.4.7)

and can prove similarly that this is a group. The two homogeneous

groups ['(n) and () Flve rise to the same inhomogeneous Igroup,
which we denote by ['(n). Each of the groups /{n) and I{(n) is
called a principal congruence group,t and the same title is some-
times conferred on ['(n).

Since —f e I'(n) if and only if n =1 or 2, we have

fimy=rm/A=rmyjA (n=1,2), (1.4.8)
fy=rim=rn)/A n=3). (1.4.9)

Both I'(n) and F(n) are normal subgroups of I'(1), and f(n)isa
normal subgroup of f'(l). For, if Sel(n) and Te ['(1), then

T'ST=T"IT=1I(mod n),
and the proof is similar in the other cases.

t German: Hauptkongruenzgruppe.
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Clearly
lev I'(n)=lev I(n)=lev [{(n)=n,
and aiso
Am)cTn), A<l

Further, since J'U"J=U" and H{U")=n, it follows from
(1.2.22) that A(n) and I'(n) are invariant under the antomorphism
T +— J7'TJ, but not under the automorphism (1.2.22) unless n is
even. On the othgr hand, [(n) is invariant under ali automorph-
ismsof (1), and A(n) and f'(n) are invariant under all automorph-
isms of f‘(l).

The factor groups

G{n):=I(1)/T(n), G(n):=0(1)/T(n) (1.4.10)

and
Gin):=r /) (1.4.11)
are called modularyt groups of level n. By (1.4.8-11) we have
Gm=Gny=Gin) (n=1,2) (1.4.12)

and
G =Gn)=Gn)/A (n=3). (1.4.13)

Since the number of incongruent matrices T modulo # is clearly
less than or equal to n*, the three modulary groups are clearly finite
and their orders are denoted by u(n), g(n) and g (n), respectively;
. (n) should not be confused with the Mobius function.

Theorem 1.4.1.
1
um) = 1 (1--3),
pln 44
where the product is taken over all primes p dividing n, and
- - ! A -
fgln)y=gn)=pn) (n=12), dn)=gn)=iun) (n=3).
Proof. By (1.4.12, 13), itis enough to find w(n), i.e. the number of

incongruent matrices S modulo n. Our proof is similar to that given
by Gunning (1962). We say that a pair of integers ¢, d is a primitive

t German: Modulargruppe,
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pair modulo n if and only if (¢, d, n) =1, and denote by A(n) the
number of incongruent primitive pairs modulo n.

Lemma 1. If ¢, d is a primitive pair modulo n there exists an S € I'(1)
suchthaty=c, 8 =d (mod n). Conversely, if Se I'(1), theny,bisa
primitive pair modulo n.

Proof. The last part is obvious since (v, §) = 1, so that (v,8,n)=1.

As usual we write g|r to mean that g divides r. Suppose that ¢, d
is a primitive pair modulo n, so that (¢, d, n)= 1. Take y =c and
write

C =10,

where ¢, is the largest divisor of ¢ that is prime to n. Take m € Z so
that

S:=d+mn=1(mode,),

which is possible since (1, ¢,) = 1. Then (v, ) = 1. Forif p isaprime
divisor of y and §, then p divides both ¢ and d +mn. If plc, then,
since 8 = 1 (mod c,), p + 8, which is false. If plc,, then p|n and so
pld; thus pl(c, d, n), which is false. Hence we have found v, § with
y=c,8§=d(modn)and(y,8)=1. Wecannow finda,feZ such
that ad —By =1 and so SeI'(1).

Lemma 2. Foreach primitive pair, c, d of integers modulo n there are
exactly n matrices S € I'(1) modulo n for which

vy=¢, 8=d (modn).

Proof. Let S, and S, be two members of I'(1) with second rows
congruent to [¢, d] modulo n. Then

! k] {mod n),

5‘5515[0 1

for some k € Z. As there are only n incongruent values of & modulo
n, it follows that there are exactly n incongruent matrices S € I'(1)
with [y, 8]1={¢, d] (mod n).

Lemma 3. A(n) is a multiplicative function; i.e., if (ny, n;} =1, then
Alnina) =A(n)A(n,).

1.4 The level of a subgroup; congruence subgroups 23

Proof. Let v, 8; be a primitive pair modulo n; (f =1, 2). Then
YR+ Yoty 8iny+ 6,0, is a primitive pair modulo nn,, since
(ny, n2) = 1. Also, incongruent pairs for n, and #n, lead to incon-
gruent pairs for nn,; ie., if

yiny+ying =y in,+yn, (mod ngng)

and
e+ 8 =8n,+8;n, (modn,n,),

then yi =1y, (mod n,), 8, =8, (mod n,), y2= v, {mod n,) and §; =
8, {mod n,). Thus A{n)A(n,) < A(n,n,). Conversely, let v, 6 be a
primitive pair modulo nn,; then v, § is a primitive pair modulo n,
and modulo n,. Also, since (ny, n;) = 1, incongruent pairs modulo
n,n, cannot give rise to congruent ones modulo n, and modulo n,.
Thus A(nn) =A(n)A(ny).

Lemma 4. If pis prime and k=1, A(p*)=p™* (1 —-p7?).

Proof. There are p*(1—1/p) incongruent integers ¢ modulo p*
such that (¢, p) = 1. For any one of these, each of the p* incon-
gruent values of d will give a primitive pair. Since these pairs are all
incongruent modulo p* we have p?*(1 —1/p) such pairs. There are
p“! values of ¢ such that (c, p) = p. To each of these correspond
p“(1—1/p) values of d incongruent modulo p* and such that

(d, p) = 1. This gives p**~'(1 — 1/p) primitive pairs. Addition gives
1
A(p") ﬂp“‘(l —?)

From lemmas 3 and 4 we obtain

Am)=n?T] (1—-;15)

pln

and, since u{n)=nA(n), by lemma 2, the theorem follows.
' H
Theorem 1.4.2. If m and n are positive integers,

FimynI'(ny=T({m, n}) (1.4.14)
and
Fm)N(n)=I'((m, n)), {1.4.15)

where {m, n} is the least common multiple of m and n.
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Proof. Write h = (m, n), | ={m, n}. Wehave Te I'(m)~I"(n)if and
only if T=1 (mod m) and T =1 {mod n); this holds if and only if
T'=1 (mod /). This proves (1.4.14).

If Te'(mY(n)then T=5,5; where §,=I (mod m)and §,=1
(mod n). Hence §,=1 (mod h) and §,=1T (mod h), so that T=1
(mod k). It follows that

F(m)(n)c I'(h). (1.4.16)
Now, by (1.4.14) and one of the isomorphism theorems,
(Fm)()Y FM(ny=(m)/ (1), (1.4.17)

so that
p(n) =) F(n))=[TO: D) T () () (n): Mn)]
=[I(1): I{m) (7)) (m): I'(1)]
={F(D: T (n)]u (D) pw(m).

Since w(Hu(h)=pu(m)u(n) by the formula in theorem 1.4.1 it

follows that
[r():r(m)yr(n)]=u(h)

and this combined with (1.4.16) gives (1.4.15).

Theorem 1.4.3. If (im, n)= 1, then
Glmn)=Gm)x G(n).

Proof. By (1.4.15, 17),
I'(y/rin)y=I{m)/I'(mn) (1.4.18)

so that we can identify G(n) with I'(m)/I'(mn) and G(m) with
I'(n)/I'(mn). These are both subgroups of I'(1)/I'(mn) = G(mn).
We have, by theorem 1.4.2,

Gm)nG(n)={1}, G(mInG(n)=G(mn),

where [ is the identity in G(mn). From this the theorem follows;
see theorem 2.5.1 of Hall (1959).

By repeated applications of theorem 1.4.3 we see that, if

n=prpac P,

——

T

I TR
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where the p, are different primes and a, >0 (1 =i = k), then G(n)
is the direct product of the &k groups G{p{"). Thus the structure of
G(n) is known when we know the structure of G(p*) for each
primepandkeZ”. It follows from (1.4.8, 9) that some knowledge
of the structure of G(n) may be obtained when we know the
structure of the groups G(p*).

So far we have considered principal congruence groupsonly. If I
is a subgroup of I'(1) and if, for some ne Z*,

I'myerlrsr(l), {1.4.19)

we say that [”is a congruence group; I is then necessarily of finite
index in ['(1}. Further, since U" € I', it follows that the level of ['is
a divisor of n.

Suppose that I is a congruence group satisfying (1.4.19) and that
I'(y=r(n)- R

It follows that I' = I"(n) - R,, where Ryis asubsetof R i.e. I'is the
set of all matrices T that are congruent to a member of %, modulo
n. Congruence groups are often defined in this way in terms of a
finite set &, of matrices,

As an example of a non-principal congruence group, let

Io(n)={Tel'(1):c =0 (mod n)}. (1.4.20)
That Iy(n) is a group follows from (1.1.5, 11). Clearly
Foln)y=ryn)/A.

Similarly, we define

Mn)={Tel(1).b=0(mod m)} (1.4.21)
and
Ym)={Tel'(1):b=c=0(modn)}
(1.4.22)
=oln)y~I(n).
Since !

d —¢
veirve| 3]
v ~p al

I'o(n) and I°(n) are conjugate subgroups of /(1) and
Pny=VImV, [m)=v"Tn)V.
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Since I'(n)e I'(n) and U € ™(n) only when n divides r, it
follows that

n=levIn)=levIy(n)=levig(n)

and similar results hoid for the corresponding inhomogeneous
groups.

We now calculate the index of o(n) in I'(1).

If ¢ =0 (mod n) and ad —bc = 1, it follows that (d, n) =1, and
this holds for

d{n):=nl] (1 -—g)-)

pin

incongruent values of d modulo n. Each of the ¢(n) pairsc,d isa
primitive pair modulo 7, and lemmas 1 and 2 show that there are
exactly nep (n) incongruent matrices modulo n Io(n). It follows that

1 .
= Ty = 1+ 1.4,23
por=rO: L= T (140) (1429

and that

d(n):=[L(): Fo(n)]=w(n). (1.4.24)

Values of d(n) and §i(n) are given for n <16 in table 2.

Table 2
n aln)  Pln) n fln) in)
1 1 i 9 324 12
2 6 3 10 360 18
3 12 4 11 660 12
4 24 6 12 576 24
5 60 6 13 1092 14
6 72 12 14 1008 24
7 168 8 15 1440 24
8 192 12 16 1536 24

Theorems 1.4.4, For any positive integers n and N,

F(N)(n)=T°((N, n)), (N o(n}=To((N, n)).
(1.4.25)

USRI R YN T IR
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Proof. It suffices to prove the first identity. Write N, = (N, n). Since
F(N)Y< TN, and TP(n) < I'°(N,) we need only prove that
(N e (NI (n).
Take any S € I°(Ny), so that 8 =0 (mod Ny) and therefore
ad =1 (mod N}
It follows that (8, N;) = 1. For any integer r write
s=wrs=[% P]
vy 8
say. Then
&8'=8+prN=(8 N){A +rB),

say, where (A, B) = 1. We can therefore choose r so that A +rBis
a prime greater than n. It follows that

(', n)=((8, N),n)= (8, N,n)=(6, N)=1,
and therefore
(N&', n)=(N, n)=N,.
Accordingly we can choose an integer s such that
B +sN6' =0 (mod n).
It follows that, for this choice of r and s,
UNwWhNS e I''(n)
and so S € I'(N)I*(n).
Observe that we have in fact proved slightly more, namely that
A(MI™(n) = I'*((N, n)). (1.4.26)

We also require to know the index in [(1) of the group

Folm, ny:=Ty(m)I(n). (1.4.27)
1
In particular, we note that I't(n) = I'y(n, n) and that [I5(n): I'(n)]is
¢(n), since it is the number of solutions modulo n of the congru-
ence ad=1 (mod n).
Now the m matrices U™ (0 <r <m) are easily seento form a left
transversal of Io(m, mn) in Iy{m, n), Hence

(Fo(m, n): o(m, mn)]=m,
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and, similarly,
[Io{m, mn): Iy(mn, mn)]=n.

Accordingly,

[To(m, n): I'(mn)] = mne{mn),
from which we deduce that '

[F(1): Fo(m, n))=[T(1): Io(m, n)]=g(mn). (1.4.28)
In particular, the index of I'g(n) in I'(1)is |
G(n?) = ng(n).

Theorem 1.4.5. Let m, n and q be positive integers. Then
rg(m, n) = (F(}(m$ m-}'); Uﬂ)-

Proof. Itisenough to prove that, if § € I 4(m, n), integers r and s can
be found such that

S =U"SU" e I'y(m, ng).
We have, in an obvious notation,
B’ =(a+mylsn+B8+mbé =n{la +my)s+B,+rd},

say. Now (a, ny) ={(a, n) =1, since a8 = 1 (mod n), so that we can
choose r to make o« +my a prime greater than g. Then
{a@ +rmvy,q)=1, and therefore s can be chosen to make 8'=0
{mod nq), as required.

1.5. Groups of level 2. We shall need to study such groups when
we introduce theta functions, We note that the following six
matrices, defined in (1,1.4) and (1.2.2, 5, 6) form a set of coset
representatives of I'(1) modulo I'(2).

L ol ) vl

zzo] _[0 “1] 2_{-1 -~1]
W[li’*p”1 1‘P” 1t o)

The corresponding mappings form a transversal of fi (2) in f (1).

;
z.
F
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We have
P=ll= V=W =] {mod2),
P=VU, P*=UV, W=UVU= VUV (mod?2).

This illustrates the fact that (2) is isomorphic to the dihedral
group of order 6, i.e. the symmetric group on three symbols. In fact
we can set up a correspondence between

LU,V,W,P,P

and the identical permutation e, (12}, (13), (23), (123), {132),
respectively; we use here the usual cycle notation.
Between I'(1) and I'(2) we have four groups

13(2), I'u(2), I'(2), T'w(2)

asin fig. 1, where the index is marked and where normal subgroups

Fig. 1. Groups between I'(1) and I'(2).

]

are indicated with a continuous line. Here

Iy2)y:={Sel'(1):5=1or U (mod 2)}, (1.5.1)
and I'v(2), I'w(2) are defined similarly, while
[p(2):={Sel"(1): S=IPor P’ (mod 2)}. (1.5.2)
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Note that I (2)=14(2), I'w(2)=172). The three subgroups
I(2), I'v(2) and Iy (2) are conjugate; in fact

Tv(2)=P ' Iy (2P, Tw(2)=P Q)P (1.5.3)

Each of the four groups just defined clearly has level 2.

The matrix —7 belongs to all six homogeneous groups men-
tioned above, so that an exactly similar figure can be drawn for the
associated inhomogeneous groups.

The group ['p(2) is, in fact, the group I'? defined in (1.3.6). To
prove this it is enough to show that I'»(2) c I'?, since both groups
have index 2 in I'(1). This follows since I is generated by P and P,,
where P, is defined by (1.3.7), and P, = P? (mod 2). We have also

f2)=1"

For certain purposes it is convenient to define a homogeneous
group I™*(2), which does not contain —I and whose associated
inhomogeneous group [*(2) is identical with [(2). We define

T (2):={Sel1):a=8=1(mod4), B =y=0(mod 2}}.
' (1.5.4)

It is clear that this group has the properties stated and that
racr*2)crQ).

I'™*(2) is of index 12 in I"(1) and contains /'(4) as a subgroup of
index 4; see fig. 6 (p. 82). It is easily verified that I'™(2) has
normalizer I'v(2). Also I'*(2) has two conjugate subgroups in I'(1),
namely P~'T™*(2)P and P™*I™*(2)P?, whose normalizers are [',(2)
and I'w(2), respectively.

We note in conclusion that although both (1) and ['(2) are
normal subgroups of index 6 in f (1), they are distinct, since their
quotient groups differ.

1.6. Groups of level 3. It is easily verified that the transformations
associated with the following twelve matrices constitute a transver-

sal of 1'(3) in (1),
I vV, v,
U v, w, Wit . (1.6.1)
p, P, P, P.

repas

R e < o
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Here P,, V,, V, are defined by (1.3.7, 10) and the remaining
matrices are defined in the previous section. G(3)is isomorphic to
the alternating group on four symbols and the transformations
listed in (1.6.1) can be put into one-to-one correspondence with
the permutations

e, (12)34), (13)(24), (14}23),
(234), (243), (134), (143),
(124), (142), (132), (123),
respectively. We write _ :
Ty ={Tel'1):xT=1, Uor U*(mod 3}}  (1.6.2}

and conjugate subgroups I'w(3), I'»(3) and I,(3) are defined
similarly, U being replaced by W, P, P, at each occurreice in
(1.6.2). Then

Fu@)=Vv>ry®yVv, r.3)=Vvi'TudVv,,
Iy = Vi'Tu(3) V.. (1.6.3)

Clearly I';(3) = I'o(3) and I'w(3) = I"(3).
Further,

P={Tel1):=T=1V, Vior V,(mod 3)}}; (1.6.4)

for the set I" on the right-hand side of (1.6.4) is clearly a subgroup
of I'(1) containing /(3) as a subgroup of index 4, and so has index 3
in I'(1). Further, by (1.3.9), I'"* is contained in this subgroup I” and,
since [I'(1):I*]=3, I'* =T The factor group I'*/T(3) is isomor-
phic to the four-group. There are three conjugate groups between
I'(3) and I'*, namely the groups

I'v(3), Fvl(3) and rv,(3)
where

N@):={Tell(1):+T=1or V{(mod 3}, (1.6.5)
and the other groups are defined similarly, We have

N 3)y=P'ra3yr, I,3)=rP7I3)P. (1.6.6)

~ Itis easy to see that

I3)={Tel'(1}: Q7'TQ =T (mod 3)}, (1.6.7)
where Q is given by (1.3.19),
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Corresponding results for the associated inhomogeneous groups
and their relative structure is illustrated in fig. 2. With the excep-
tion of the modular group itself, all the groups considered in this
section have level 3.

Fig. 2. Groups between ['(1) and 1'(3).

1.7, Further results. We give here a brief sketch of further results
of a similar kind, and some references for further reading,

From the monumental treatise by Klein and Fricke (1890, 1892)
a great deal of information about particular subgroups of the
modular group can be excavated by the persevering reader, and
some of this information is given in a more easily assimilated form
by Vivanti (1906, 1910). For example, the following alternative
definitions can be given.

|
b
|
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2={T:Te (1), ab+bc+cd =0 (mod 2)}, (1.7.1)
[P ={T:Te (1), ab+cd =0 (mod 3)}, (1.7.2)

PO =1AT?={T: Te (1), ab+3bc +cd =0 (mod 6)}.
(1.7.3)

See Klein and Fricke, vol. 1, p. 627; Weber (1909), §§54, 71,
Petersson (1953); Wohifahrt (1964). These definitions can be
deduced from theorem 1.3.3 by writing the congruence defining
{5 in the form

T 'QT=+Q (mod v).

We have seen in (1.4.20,21) that each of the congruence
subgroups I,(n) and I'°(n) can be defined by a single linear
congruence satisfied by entries of the matrices belonging to the
group in question. The same holds for each group conjuga:e to
I'o(n). Thus, when n =2 there are three conjugate subgroups,
namely I5(2) = I',(2), I"*(2) = 'y (2) and

FQ)=P ' rf2)P={Tel1):a+b—c—-d=0(mod 2)}.

(1.7.4)
Similarly, when n = 4 we have again the three groups
Fo(4)=:Ty(4), TI'{4)=:Ty(4)
and
Fo@):=P ' [()P={Tel(1):a+b-c—d=0(mod4)}.
(1.7.5)

Also, when n =3, there are four conjugate subgroups listed in
(1.6.2, 3}, namely I',(3) =T,(3), I'w(3)=17(3) and also

I3)={Tell):a+b-c—d=0(mod 3} (1.7.6)
and
FnB3)={Tel(l):a~b+c—d=0(mod3)}. (1.7.7)

See Rankin {(19735).

Newman (1962) has studied a family of groups, which we denote
by f (meZ"); here [ denotes the subgroup of f(l) generated
by the mth powers of elements of f"(l). For m=2, 3 it can be
shown that the groups f'z, ™ are the ones we have been studying.
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ForeachmeZ", [ isnormalin f"(l) and Newman has shown that
frofn = oo o= (1) if (m, 6) =1, (1.7.8)

=17 itm =1, P =1 if(m2)=1.
(1.7.9)

When m =0 (mod 6), the structure of I is not known in all cases.
Thus I is known to be a subgroup of index 216 in f() lying
between f"(l') and f’”(l), while, for n > 1, {f’ﬁ: f""}a n*” and may
be infinite. See also Rankin (1969).

In the further algebraic study of the subgroups of the modular
group the following three group-theoretic theorems are useful.

Theorem 1.7.1 (Kurosh). Let the group G be a free product of
subgroups A,. We write this as G =1} A,. Then, if H is a subgroup
of G, we have

HmF*n’;BB’

where F is a free group and, for each B, By is conjugate to one of the
subgroups A..

We note that the free product [} B, can be empty and that /- can
be the trivial group. However, if [[} B, is not empty, then F must
have infinite index in G; for otherwise some power of an element
of [T# B, (other than the identity) would belong to F.

Theorem 1.7.2 (Schreier). Let H be a subgroup of finite index pina
free group G of finite rank R. Then the rank r of H is also finite and

r=1+u(R~1).

We note that the rank of a free group is the number of free
generators of the group. For proofs of both these theorems see
Kurosh (1960).

Theorem 1.7.3 (Nielsen). Let the group G have identity element e
and be the free product of cyclic groups G, of orders m; (1=i=<n).
Then the commutator group G' is a free group of index m=
mums,...m,in G and the rank of G' is

emfte £ (1-2)).

[ ———

e
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G' is generated by the set of all commutators [xax™'

acG,beG,a#e#b 1sisjsnand

, xbx 1], where

X=dy...4; 841 i1y

for any a, in G, (1 =k = n). The factor group G/ G' is isomorphic to
the direct product of the cyclic groups Gy, G, .. ., G..

See Nielsen (1948) and also Lyndon (1973); for the commutator
notation see (1.3.12). Theorem 1.7.3 provides an alternative
method of proving theorems 1.3.1 and 1.3.2,

With the help of theorem 1.7.1 we easily derive the following
result of Newman (1964).

Theorem 1.7.4. A subgroup of F(1) is free if and only if it contains no
elements of finite order other than the identity. If {is a normal
subgroup of (1) different from P, 1% and 2, then [ is a free
group.

The following theorem is a simple deduction from Schreijer’s
theorem.

Theorem 1.7.5. Let [ be a free subgroup of 1) of finite index u.
Then p =0 (mod 6) and [ has rank 1+%u. In particular, the index
of any normal subgroup of Q1) other than (1), 1* and [ is
divisible by 6.

Proof. We shall prove the last sentence by analytic methods in
chapter 2. The fact that 142y is the rank of /" is due to Mason
(1969).

Write 4 =" f"(l) and put

A=[l:4], v=["1):4]
so that
A =[F(1):4]=6w.
By theorem 1.7.2 applied to Adasa subgroup of [ and (1) we have
I1+(r=DA=1+yp,

where r is the rank of [ 'Ihqé, u=6(r—1), from which the
theorem follows,
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Fig. 3 displays all the normal subgroups between f(i) an@f‘(6).
The two groups /™ and [ are the commutator groups of /2 and
I By applying theorem 1.7.3 their indices in the groups
immediately above them can be verified.

A complete study of all subgroups between [ (1) and {(4) has
been made by Petersson (1963). His list contains thirty groups,
including f(4) and f7(1); among these thirty groups there are
contained, of course, the six groups in fig. 1. Petersson (1953} has
also studied subgroups of finite index p in f(1) for which

f*(1)=ﬁ~tf U*;
k=0

such a subgroup /" is called a cycloidal subgroup of ().

Fig. 3. Normal subgroups between f( 1) and f(é).
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We have already remarked that G(Z) is isomorphic to the
dihedral group of order 6 and that G(3) is isomorphic to the
alternating group on four symbols, which is the tetrahedral group.
It can be shown that G(4) and G(5) are isomorphic to the
octahedral and icosahedral groups, respectively. In fact, for n =2,
3,4, 5, GG(n) is generated by

u=Ul(n), v=Vvl(n),
where
u"=p?={uv) =e,

¢ being the group identity. A

A great deal of information about the modulary groups G(n)
and G(p*) can be found in Kiein and Fricke (1890, 1892) and in
Vivanti (1806, 1910); see also Frasch {19;3). A complete classifi-
cation of all the normal subgroups of (G(n} has been given by
McQuillan (1965).

The definition of level given in §1.4 is due to Wohlfahrt {1964).
Previously the concept of level was only defined for congruence
groups. Thus a congruence subgroup I of I'(1) was defined to be of
level n if I'(n) < I" and if n is the least positive integer for which this
inclusion is valid. That the two definitions agree for congruence
groups is a consequence of the relations

An)gn)=T(n), dmfign)=Lk),  (1.7.10)

which were essentially proved by Wohlfahrt; see also Rankin
(1969) and Leutbecher (1970). Here ¢q is any positive integer.

If we now assume that lev [ = n, so that A(n)c I'c I'(1), and
that I" is a congruence group, then, for some geZ*, I'g)< I’
From (1.7.10) we deduce that ['(n)Y< I" and it is clear that n is the
least positive integer for which this holds. Thus the two definitions
agree.

It has been proved by various authors that 4(n)=1(n) for
1sn=>5andthat{I'(n):A(n)]=o0 for n = 6. In fact A(6) = T"(1)
and [I"(n): A(n)}"(n)]=co0 for n =6, Similar results hold in the
inhomogeneous case. It follows that every subgroup of level 2, 3, 4
or 5 must be a congruence subgroup. Also the groups described in
§§1.5, 6 are the only subgroups of levels 2 and 3.

There exist subgroups of finite index in [(1) that are not
congruence subgroups. That this is the case was first stated by
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Kleinin 1879; see Klein and Fricke (1890) (pp. 308,418, 659-63),
where a number of examples of groups and their associated
functions are given. Proofs were given by Fricke (1887) and Pick
(1887), who produced an example of such a subgroup of index 54.
All the subgroups of (1) of index p =7 are listed in Rankin
(1969). For i1 < 6 these are all congruence subgroups, but 28 of the
42 subgroups of index 7 are not congruence subgroups and fall into
four classes each containing seven conjugate subgroups. In recent
years various authors have discovered large families of ‘non-
congruence’ subgroups. See, for example, Reiner (1958), Newman
(1965, 1968), Rankin (196756) and Mason (1969).

" Itis possible to give a rather complicated formula for the number
of subgroups of (1) of given index u and to give methods, in
certain cases, for specifying the number of normal subgroups; see
Newman {1967).

2: Mapping properties

2.1. Conformal mappings. We begin by recalling some properties
of meromorphic functions on the extended complex plane.

A domain D is a subset of C that is open and connected in the
topology on C; in particular, H is a domain.

Let f be a function defined on a domain D. In order to discuss the
behaviour of f at o, when oeD, we make use ¢! the
homeomorphism

z*=1/z
between neighbourhoods of z =0 and z* =0, and write

fHz*) =f(2),

so that f* is defined on a neighbourhood of 0 when 00 e D.

The statement that f is holomorphic on D means that (i) f maps D
into C, (ii) f is differentiable (with a finite derivative) on D —{c0},
(iif) if co e D, f* is differentiable on some neighbourhood of 0. Note
that, when c0e B, the derivatives of f and f’ are related by the

equation
¥ 2%y =—zf(2)

on punctured neighbourhoods of z* =0 and z = co,

We say that f is holomorphic at a point p € C if f is holomorphic
on some domain D) containing p. In particular, f is holomorphic at
oo if f* is holomorphic on some domain containing 0; such a
domain can always be taken in the form |z ¥| < r for some r>0.

We say that f is meromorphic at a point p € C if there exists an
integer g =0 such that A is holomorphic at p, where

1
h(z):=(z —p)'f(2);
this implies in particular that & is continuous at p and that

h{p)=lim (z — p)f(z).

z-+p

W»? say that f is meromorphic at oo if f* is meromorphic at 0. A
point p at which f is meromorphic but not holomorphic (so that
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g >0} is called a pole of f. The smallest value of g that satisfies the
conditions is called the order of the pole. If we can take g = 1, the
pole is simple. At a pole p of f we have f(p)= 0.

More generally, if f is meromorphic at p € C, we define ord(f, P)
to be the greatestinteger g such that (z — p)™f(z) is holomorphic at
p. If g >0, g is the order of the zero of f at p; if g <0, —g is the
order of the pole of f at p. _

Suppose that f maps a domain D onto a subset D, of C. we say
that f maps D conformally onto Dy, or that f is conformal on 0, if
and only if f is meromorphiconDand fisa bijective map of D onto
D,. If f is conformal on the domain D, it follows that its derivative f'
exists and is non-zero at all points of [ that are not poles of f. Also,
if p is a pole of f in D, then p is a simple pole. Further, the inverse
function f~* of a conformal mapping f is again conformal. The
proofs of these facts involve the use of Rouché’s theorem.

Since a holomorphic function is continuous, it follows that every
conformal mapping f is a homeomorphism of its domain IJ onto
f(D), which is also a domain.

Conformal mappings have the property that angles between
intersecting curves in the domain [ are preserved in f(ID) both as
regards magnitude and direction.

We now consider the particular case when

az+hb
cz+d’

f2):=T(z}=

where T ©. As we saw in §1.1, T is a bijection of € onto itself.
If ¢ =0, then
fe)=9z+2
z)=zto
The mapping T is holomorphic on C and there is a simple pole at
oo. If ¢ # 0, the mapping T is holomorphic on € ~{—d/c} and there
isa simple pole at —d/c. That is, in every case T is holomorphicon
€ —{~d/c} with a simple pole at —d/c. Hence T maps L confor-
~ mally onto €. Note also that, for z # ~d/c and z # ©,
1
T(z)=———3. 2.1.1
@ =t vay @11
The converse result that, if f maps € conformally onto €, then
fe &, also holds,
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It can be shown similarly that f maps C conformally onto C if and
onlyif f e © and f(o0) = 0. Further, f maps H conformally onto Hif
and only if f e {2, In these results the ‘if’ parts are straightforward,
while the ‘only if’ parts require the use of Schwarz’s lemma.

Since we shall not require the ‘only if’ parts, we content our-
selves by showing that, if T € (2, then TH =H. For this purpose we
write

w = u+iv=T(z) ﬂz::j, z =:x+1y,
where u, v, x and y are real. Now
v=ImT(z) ﬁi—gz—i:ﬂg, (2.1.2)
and conversely
yﬂEW%ZF‘ (2.1.3)

It follows that w e H if and only if z e H.
We note also that, if T {2, then

TR=R, TH=H
and, if Te (1),
=P, TH=H.
Further, circles and straight lines are mapped by T onto circles
or straight lines.
It is sometimes convenient to write the transformation Te @ ina
different form. Let z, and z, be two different finite complex

numbers having finite images w, = Tz, (j = 1, 2). Then the transfor-
mation

az+b
w:mw
cz+d
can be written in the form
W — W z—2z
L= et (2.1.4)
W — W, Z—Zs

where K is a constant. Further, if z, is another finite point having a
known finite image w;, then K is uniquely determined, namely

sza“‘wl/za—zl.
Wi— Wyl Z37 2
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Alternatively, since o0 = T(—d/c) we have

+d
”z;d’ (2.1.5)
and this holds also if ¢ = 0.
2.2. Fixed points. For any T'€ @ and z € C we define
T:z=cz+d. : (2.2.1)
Observe that, although Tz and (—T)z are the same,
(-Tiz=—(T:z).
In particular, I:z =1, (=1):z = -1, and, more generally,
U z=+1 (nelZ).
By (1.1.4), for any §, Te @ and z #£co, T o0,
ST:z =(ya+8c)z +yb+8d =(yTz +6)(cz +d)
={§: TzXT:z).
We thus have th= important identity
ST:z=(85:Tz)(T:z). (2.2.2)
A particular case of this is
1=(T""Tz)T:z). (2.2.3)

The equation (2.2.2) holds, in particular, for any S, T e £2 and all
zeH ¥ Ted? and z eH, T:z is finite and non-zero.

A point z €C is called a fxed point of a mapping T'e O if and
only if Tz =z. We suppose in the first place that ¢ #0, so that
z #00, It then follows by induction from (2.2.2, 3) that

T :z=(T:z)" (2.2.4)

for any n € Z, where T is the associated matrix.
The equation Tz = z is equivalent to

czit{d—a)z—-b=0,
which has two, not necessarily distinct, roots, namely

(a—d)*[(a +d)*— 4]i
2c

(2.2.5)

Zyy Tyl
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We note also that

lezm—b/c, 21+z2£(a—d)/cv
so that

(T2 M Tz =(cz, +d¥cz+d)=1. (2.2.6)

Itis clear that, when T € £2, the nature of the roots z,, z, depends
upon the sign of the real number (a +d)*—4. If (i) |tr T| <2, then
(a +d)*—4<0and z, and z, are conjugate complex numbers, one
of which, say z,, lies in H. T is then called an elliptic transformation
and z, and z, are called elliptic fixed points. If (i) ftr 7{= 2, then
z, =z, and we have one real fixed point. T is called a parabolic
transformation and z, is called a parabolic fixed point. Finally (iii),
if [tr T|>2, then z, and z, are distinct real numbers and T is called
a hyperbolic transformation and z, and z, are called hype rbolic
fixed points.

We now examine these possibilities in greater detail, for the case
when T € I'(1), still making the assumption that ¢ # 0. Our objectis
to express the mapping T in the form (2.1.4), i.e.

w“wlz__Kz—z,=T:zz.z~—z;, 2.2.7)
W W, z—zs Tizy z-—12,

where this is possible; see (2.1.5). Here w=Tz and w,=
Tz, (f = 1, 2). Note that, although T: z; and T z, change sign when
we replace the matrix 7 by —T, their ratio remains unchanged.

(i) Elliptic transformations. Here |tr T} <2, and, by theorem 1.2.3,
there are two possibilities:
(@)tr T=0, T=+xL""VL for some L € I'(1),
or
(Bytr T==x1, T=+L"'P'L fors=1,2 and some L e I'(1).
Incase{(a) Tz =1z is equi{'alent to V(Lz)=1Lz;ie. Lz isafixed

‘point for Vandso Lz, =1, Lz,=—i. Hence

2, =LY% z,=L"'=) =%, {2.2.8)

Here the bar denotes the complex conjugate. Since 77 = V? = ],
we have, by (2.2.4), (T: z,))=~1 (j=1,2) and thereforc, by
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(2.2.6), K=(T:2,)/(T:z,)=—1. Hence
W2, "_MZ'_"Zl
Wez, Z—Z;

(2.2.9)

The transformation T is of order 2.

Incase (b), Tz =z isequivalent to P*(Lz)}= Lz, wheres = Tor2.
An elementary calculation shows that both P and P? have fixed
points

p=e"? : ‘ (2.2.10)
and g, so that Lz, =p, Lz,=p. Hence
Zt ="“ll_iﬂ, szLw‘ﬁ. (2211)

Since T*=xP*==] (2.2.4) gives T:z,=+p or xp® and so
T:z,=%p?or 2p, by (2.2.6). Hence K = p or p?, and the transfor-
mation takes the form

WA _gETL (K =porp?) (2.2.12)

w—2, -2

It is a transformation of order 3.

(ii) Parabolic transformations. Here tr T=4+2 and, by theorem
1.2.3, T=+L"'U for some qeZ (g#0) and Lel(1). Thus
Tz =z is equivalent to U9(Lz)=1Lz, ie. (Lz)+qg=Lz. Hence
Lz = o and the single fixed point is

z, =L, (2.2.13}

Since ¢ #0, z, is a finite rational number.
Puta+d =2¢, where e =+1. Then, by (2.2.5), z, = (a —d)/(2c)
sothat T:z,=e=tr . If w=Tz,
1 cz+d mC(Z"‘Z;)‘FE
w—z, (a-cz)z—2z) &elz—z)

Hence the transformation T can be expressed in the form
1 1

w2y Tz-z,
So far we have assumed that ¢ #0. When ¢ =0, T=+U" for
some g € Z and tr T = £2_ If g = 0 we obtain the identical transfor-
mation under which every point is fixed. When g#0, T=

+ce. (2.2.14)

P
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+[. 7 UL (with L = I) and we include T among the set of parabolic
transformations. There is just one fixed point, namely z, =20, In
place of (2.2.14), the transformation T takes the canonical form

w=2z+q. (2.2.15)

(iii) Hyperbolic transformations. Here |tr T|>2 and, since z, is
real, (2.1.5) and (2.2.6) give K =(T": z,)>>0. The transformation
has the canonical form (2.2.7) with K>0; clearly K # 1, since
Zy # Z2.

From the above analysis we see that the transformations
Tel (1) can be divided into five classes:

1. The identity transformation, whose matrix T = %1,

2. Elliptic wansformations of order 2. The matrix T of such a
mapping is conjugate to £V and satisfies T2 = —I. We denotc by

E,={zeCiz=L"" Lel (1)} (2.2.16)

the set of all elliptic fixed points of order 2 in H.

3. Elliptic transformations of order 3. The matrix T of such a
mapping is conjugate to =P or +P* and satisfies 7" = +] We
denote by

E,={zeCiz=L"p, Lel(1)} (2.2.17)

the set of all elliptic fixed points of order 3 in H. Here p is defined
by (2.2.10).

4, Parabolic transformations. The matrix T of such a mapping is
conjugate to U7 (ge Z,q#0). The set of all parabolic fixed
points is P, since P={zeC:z~= L ‘oo, Lef(1)}. Parabolic fixed
points are also called cusps for a reason that will be clear later on.

5. Hyperbolic transformations. The fixed points of such transfor-
mations are less important in the theory. It is easy to see that they
are all irrational numbers. Hyperbolic transformations are of
infinite order. !

Note that TE, =E,, TE, =L, for all T'e [*(1).
We also write

E=F,UF, (2.2.18)

We now suppose that ' is a su_bgroup of I'(1). The ma.ppings
Te [ can be divided into five classes in a similar way, but some of
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these classes may be empty. Thus I will contain elliptic transfor-
mations only if it contains a mapping conjugate to V or P. For
m =72, 3 we denote by E,..(I") the set of all fixed points in H of
elliptic transformations of order m belonging to £ It follows that

E(DN={zeCz=L"" Lef),L'VLel}, (2.2.19)
E(N={zeCiz=L""p,Lef(1),L"'PLel}. (2.2.20)

Note that we can omit L™'P?L since L™'P?L ¢ [ if and only if
L~'PL e [ and has the same fixed points. We write

B =E(D) VE(D). (2.2.21)

If /*is normal in f‘(l) itis clear thatE,.(I") is either E,, or the null set
@,

We now suppose that z is any point of H'. The stabilizer of
z (mod I') is defined to be the subset I', of I" consistingof all T r
for which Tz = z. Clearly I, is a subgroup of I'". The stabilizer of
z {mod I"'(1)) is denoted by I',(1); the corrcspondit}g inhomogene-
ous groups are denoted by [, and f, (1). Evidently I, is a subgroup
of I,(1). Further, if L e (1) then

Ll =(L7fL), (2.2.22)
The preceding discussion of fixed points shows that
f. =1y

in the notation of §1.2. Also [(1) and f'p(l) are the cyclic groups of
orders 2 and 3 generated by the mappings V and P, respectively. It
follows immediately from this and (2.2.22) that

(1-'f,I, whenz=L""o,

L'f(DL, whenz=L"",

f.(= ! (2.2.23)
L (DL, whenz=L""p,

A=l otherwise,

Here L is any member of f'(l), and z € H'. Note that, in every case,
f",(l) is a cyclic group.
We now define the order of z (mod I') to be

n(z, I):=[F.(0: 1] (2.2.24)

The index on the right is possibly infinite. However, if [ has finite
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index in (1) then n(z, I'} is finite. For if the cyclic group f,(l) is
generated by S it follows that S” e [ for some finite positive integer
n,and n(z, I'} is in fact the least such integer n. We note also that, if
we take I', = [(1), I'y= [ in theorem 1.1.2, with S as above then,
forl=i=m,

ag=n(z, L7'ILy=n(Lz,I). (2.2.25)

The transformation § is parabolic, elliptic or the identity according
as zeP, E or H' —-PuUE, respectively; in fact, we can take §=
L'UL, L7 'VL, L7'PL and I in the four cases listed in (2.2.23). In
the latter case n(z, r}=1. When z €P, we also call n(z, I'} the
width of the cusp z (mod I'); if z=L""'o0, [}, is generated by
L'U"L, where n=n(z,r). When zeE,, (im=2,3),n(z, N =1or
m according as z does or does not belong to £, {I").

It can be shown similarly that, when [ has finite index in (1),
some positive power of every hyperbolic transformation belongs to

, and is, of course, hyperbolic. Hence I always contains hyper-
bolic transformations.

We note, in conclusion, that if "= I"(1) or I'(N) for N> 1, then
N = andson(z, N=mifz ek, (m=2,3) Further,if z e P,

n(z, "(1))=6 and n(z, "(N))=N.

2.3. Fundamental regions. Let I" be a subgroup of I'(1), so that the
mappings T in f map H' onto itself. In what follows we shal] only
be interested in subsets of H', so that we are not, for example,
interested in hyperbolic fixed points,

Two points z,, z, in H' are said to be congruent, or equivalent,
(mod I, if there exists a T'e [ such that

2= Tz 5.
It is easily verified that this is an equivalence relation, and we write
z,=z(mod ).

The equivalence class containing a point z € H' is called the orbit of
z (mod I") and is denoted by [z ; instead of £'(1)z we may write [2 ].
Thus E; =[], E,=[p] and, if {"is of finite index in /1), P = [0 =
{]. Clearly n(z,, I =n(z,, I') when z, =z, (mod I').

A subset F of W' is called a proper fundamental region for " if F
contains exactly one point from each orbit [z, By giving F the
quotient topology induced by the topology on M (compactified
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suitably at points of P) and the equivalence relation, F can be made
into a connected Hausdorff space which is, in fact, the Riemann
surface associated with the group [* We shall not, however, use any
Riemann surface theory, although we may mention this theory at
various points. In practice it is usually convenient to impose further
conditions on F, such as that it is a simply connected subset of H'
and is bounded by curves of a prescribed form.

Theorem 2.3.1. Let F be a proper fundamental region for a subgroup
Irof (1) and suppose that ¥ =\_J7-, ., where the sets ¥, are disjoint.
Then, if T, € I for each neZ*, the set\ o= T,F, is also a proper
fundamental region for f

This is obvious, as all we have done is to choose 7z as a
representative of Ié' » rather than z for some T'e [ The theorem is
useful since it enables us to piece together fundamental regions in
alternative ways that may be convenient for special purposes.
Usually the number of non-null regions F,, is finite.

Theorem 2.3.2. Let F be a proper fundamental region for a subgroup
fof (1) and suppose that Te f(1). Then (i) TF is a proper
fundamental region for the conjugate group T T (i) In particular,
if Te [ and T # I, then TF is a proper fundamental region for I
and F ~ TF is either empty or consists of a single point {, which is a
fixed point for T. (iii) A fixed point { for a mappir? Te I cannot be
an interior point of E. (iv) The regions TF for T €l cover W' without
overlapping; if T, and T, are different transformations in [ then T,F
and T5F have at most one point in common.

Proof. (i) IfzeHW and Te [(1), then T"'z e H' and so there exists
an Sel* such that ST 'z¢F. Then TST 'z e TF. Further, if
TS, T 'z and TS, T 'z are two points of TF, where $; and §; are in
{ then $,T 'z and S, T 'z are points in the same orbit T2 lying
in F and so are identical. The original points 78,7 'z and 75,7 'z
are therefore also identical.

(if) Let Te f‘, T # +I and suppose that { eFTF. Then {€F
and T"'¢ €F and, since these points are congruent (mod I'), { =
T2 i.e. T¢ = ¢ Hence ¢ is a fixed point for T and there is only
one such point in H'.

(iii) If ¢ is an interior point of F, then there exists a neighbour-
hood Nof ¢ withN< F. But TNis a neighbourhood of T{ = { and so
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therefore is
N =R~ TR,

ButtW eNcFandN e TNe TF,sothatN' < F~ TF, which is false
since FTF = {£}.

{iv) That H' < Uy, TF is obvious. Further ¢ € T\F n ToF if and
onlyif T7'¢ € F n T1' T,F and the last part follows from this and (ii).

When [ = F it is easy to find a fundamental region.

Theorem 2.3.3. Letne Z*, § =0 and put

S.(8):={zeH: -tk =Re z <ik,Imz =6}. (2.3.1)
Also put
k=S (0). ' (2.3.2)

Then S, is a proper fundamental region for [ Further, for each
LeH, [E]1nSu(8) is a finite set when 6 >0,

Proof. Since f, o+ consists of the transformations
w=z+kn (nel),

it is obvious that S, is a fundamental region for [

Take { e and 8 >0, and put { = £+ in, where &, 5 are real. If
1 =0, then [{1nS,(8) = J, so that we may assume that n > 0. If
77 € $:(8) for any T'e (1), then, by (2.1.2),

cHE+n)+2cdt+d* = n/6.

For given £, 7, § the number of pairs of integers ¢, 4 that satisfy this
inequality is finite; for the inequality states that the point (¢, d) lies
in a certain ellipse. For each coprime pair of integers ¢, 4 satisfying
the inequality we can find a matrix 7" e (1) with second row{c, d];
any other such matrix T is given by T = U"T" for some n<E. If
T €S, (8), then T°¢ +n e S,(8) and this can hold for at most &

- different values of n. This completes the proof,

Corollary 2.3.3. The set E is a countable subset of isolated points of
H :



50 Mapping properties

It follows immediately from the theorem that each point of E is
isolated. Further,

E= Ul{([i]u{p})ﬁgn(lln)}
from which countability follows, as each subset ([iJu[p]n
S, (1/n) is finite.

Let [ be a subgroup of f'(l). A subset F of #' is called a
fundamental region for I if F contains at least one point of every
orbit [’z (zeH') and exactly one point whenever zg€EUF. A
proper fundamental region is therefore a fundamental region, and
a fundamental region only differs from a proper fundamental
region in the possible inclusion of a countable number of fixed
points of ['(1).

Theorem 2.3.4. Theorem 2.3.1 holds with the word ‘proper’ omitted.
So does theorem 2.3.2, except that in (ii) and (iv) the two different
fundamental regions may intersect in more than one point of E U P.

This follows immediately. We note that in the proof of part (iii)
of theorem 2.3.2, Fn T'F is a set of isolated points and so cannot
contain N',

Theorem 2.3.5, Let ', and [, be subgroups of 1(1) and suppose that
fef =R Then, if F, is a fundamental region for Iy,

[Fzﬂ U Tﬂjl

TeR

is a fundamental region for [,

Proof. Let z e H'; then there exists an S,el such that S,z ¥,.
Write S7'=55'T, where Szef'z and Te®R. Then S;z2=TS5,z¢
TF, cF,. .

Conversely, suppose that z and z’ € F,, where z' = S,z for §,e
[, and that neither z nor z' is a fixed point of f'(l). Thenz e TF,,
z'e T'F,, where T, T'e ®. Hence 7'z and T""'z’ are congruent
(mod I'}), lie in F; and are not fixed points of . They are
therefore identical; i.e, z=583'z'=57'T"T 'z. Since z is not a
fixed point, we must have S;'T'T '==I; ie. Te [, T. This
implies that T'=T and §,==%I;ie. 2" =2.

R
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Corollary 2.3.5. Under similar assumptions, if fi=%f,
Ures T7'F, is a fundamental region for [,
This is proved similarly.

2.4. Construction of fundamental regions for IA‘(I.) and its sub-
groups. We denote by [, the set

Fr=F"OF?, (2.4.1)
where
F:={zeC:~i=Rez=0,lz|=1} (2.4.2)
and
F?:={zeC:0<Rez <} lz]>1}. (2.4.3)

We include o in ', but not in F'?. The closure of any transform
TFY or TF® (Te f{(l)) we call a triangle.

Theorem 2.4.1. T, is a proper fundamental region for [(1).

Proof. Let { be any point of H'. We show first that some memter of
the orbit [/] lies inF,. For this purpose we may assume that ¢ is not
congruent to any point on the frontier oF; of F,, since every such
point z either lies in F;, or else one of the congruent points z -1,
~1/z does. We call 5 =1Im { the height of {.

We observe first that, forsomene Z, ¢, = U" €S, (see (2.3.2))
and has the same heightas ¢, If £, €F,, then i{} <1 and so V¢, e[¢]
and has height greater than ¢; for

Im(=1/£,) = (Im &)/ [¢0F.

Further, for some meZ, {,=U"V{,=U"VU"¢ €S, and has
height greater than %. Either {,€F; or eise we can continue the
process and find a congruent goint {>€S, of greater height than {;.
Since §4(n) n[{]is finite, the process ultimately terminates after a
finite number k of stages in the finding of a point £, e[{]E,.

It remains to prove that each orbit contains only one point of F,,
For suppose that z, and z, are different congruent points of f.
Then both are finite and we may assume that

y:=Imz, =y =Imz,



52 Mapping properties

Let z,= Tz,, where T e I'(1), so that

Yi

V1= ez v df”

Hence [cz,+d]=1.

We cannot have |¢|=2, since no circle of radius r=1} and
orthogonal to R meets F,; also, if ¢ =0, then T'= U*, which is
clearly impossible. We may therefore assume that ¢ = 1. The only
circles of unit radius centred at points of Z that meet F, are the
circles

lz]=1 and |z+1|=1.

There are thus two cases:
(i) c=1,d=0,]z,d=1, Gi}) c=d=1,z,=p.

In case (i) we must have 7= U*V and either k =0, z;=z,=1i, or
k=-1and z,=z,=p. In case (i), T=U"P and we must have
k =0, z; =z, = p. Hence, in both cases z, = z, and this completes
the proof of the theorem.

It follows from theorem 2.3.1 that
F,=FOU{U'F?) (2.4.4)

is also a proper fundamental region for [(1). Foreach Te (1) we
write

Fr=TF, F.=TF. (2.4.5)
It follows from theorem 2.3.2 that
H’ = U IFT = U @T.
Tef(1) Tef(n

We note that the boundary (frontier) of [, consists of four ‘sides’
L Ul Iv and VI, where

ly={z=x+yiix=-% 3=y} . (2.4.6)
and
lv={z=x+yi:—3=x=0,|z|]=1,y>0} (2.4.7)

Iy and I, are contained in F, but Ul, —{o} and VI, —{i} are not.
Fig. 4 shows how the regions F r fit together. The angles between
sides contained in the regions in question are marked. That the
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y
P=VU
vu?
vty
0
Fig. 4

regions cluster closer and closer to the real axis is shown by the
following theorem.

Theorem 2.4.2. If T contains a point { with 1 =1m { =8, then
led)=1/6.

~ Proof. Suppose that { = Tz'is such a point, so that z e F,. Write

r=lzl, z =re” where im =@ =<im If n =8 we have, by (2.1.2),
lcz +df=(cx +d)’ +c’y < y/8;
ie.

(cr+d)? cos®(38) +{cr w.-fi)Q sin*(30) = (r/8) sin 8.
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Since cos*(38) =1, sin’(36) =1, we have

rr sin 9>62r2+d2>|cd|r
s &5 2 ’
from which the theorem follows.
We note that since {c, d) = 1, the condition jcd] < 1/8 is satisfied
by only a finite number of pairs ¢, 4.

By theorem 1.2.1, f(y=1, + R, where R is a set of mappings T
such that, for each S$eI'(1), there is exactly one Te @R with
[¢, d]= %[y, 8]. We choose such a set in the following way. We first
take T = I, which corresponds to y =0, 8 = 1. Then, for each pair ¢,
d with ¢ >0, (c, d) =1 we choose a and b to satisfy

al 1

— - —_F -
ad-—-bc =1, lc =3
The equation a’=a + nc on p. 9 shows that this is possible. This
determines T uniquely except when ¢ =2, in which case d # 0 and

we take a =sgn d, so that

__ac+bd"_“1_{1 ld|

ReTi="0g7=3 “W} send;

it follows that
—$<Re Ti <3 (2.4.8)

in this case.

The set of all such T we call R,, and it is clearly a right
transversal of [, in f‘(l).

We now apply theorem 2.3.5 with this choice of &, and I', =
f(l), I =fu, taking F, =F,. We obtain a region

Sy= U TH= U Fy (2.4.9)
TeR, TeRy

which is a fundamental region for I'y;. We show that Sy, differs from
the proper fundamental region S, of theorem 2.3.3 only in the
respect that the straight line segment

Ar={z=x+iy:x=—40=y<}}

in §, is replaced by the congruent segment UA, and the fixed point
Wi =4(1+1) is added,

e B e e

TR IR R
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To prove this we need only observe from fig. 4 that the line
I ={z:x = —1} is made up of sides of the regions F,, F, and Fy2y
and that no points of A belong to any of these regions, while UA
and 5(1 +i) are contained inF vy UF 2. Each of the five regions
mentioned is a subset of $y. In particular, the lines ! and Ul
contain no interior points of any region F,. Hence every region ¥,
is either wholly contained in $¢ or has no points in common with it
except possibly the nine fixed points that lie on / and U/; these are
oo, p, —p%, (1=0), 1 +1), dp—2), dp+4), —1 and 3. Hence, if
la/c|=|Too| <}, then Fr < Sy, while, if | Too] = 4, this is also true by
our choice of T in (2.4.8) to make |Re Ti| <.

We now construct a fundamental region for a subgroup fof (1)
of finite index g by applying theorem 2.3.5 with

ri=rmw, f,=r

We take F, to be F,. The regions that we shall progressively
construct will have boundaries consisting of a finite number of arcs
of circles and segments of straight lines, these lines and circies
being orthogonal to the real axis. Each arc or segment is called a
side and has two endpoints called vertices which are points of £ wP.
Two such regions are said to be adjacent at a side / if their interiors
are disjoint and if / is a side of each region.

The vertex angle at a vertex of a region is the interior angle
between the sides meeting at the vertex in question. If ¢ is a vertex
of a fundamental region F for I, the vertex set V(¢ F) is defined to
be the set of all vertices of [ that are congruent to ¢/ (mod I'). If
z;=2z,{mod I'}, where z,eEUP, then z; and z, have the same
order (mod I'). Hence points in the same vertex set have the same
order {mod I.

For every choice of & in theorem 2.3.5 we get a fundamental
region F, for f", but it may happen that, if R is not chosen suitably,
F, will consist of several disjoint components. It is possible, how-
ever, to choose & in such a way that F, is a connected subset of C.
To do this we proceed as follows.

- Let ¢, be any point of P and take any L, f(1) such that
&H=Ly00. Let ny=n({,, I), the order of {; (mod I') (see (2.2.24)),
so that the mappings L, U* (0= k, <n,) belongs to different right
cosets of [ in £(1). Write

ny—1
Dﬁx U L}Uhﬂ:].

ky=0
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D, is formed from n, adjacent fundamental regions for (1) and
contains ¢, as a vertex. If n,<g, we choose, if possible, an
1L,eI'(1) such that L, F, is adjacent to D, and such that L, belongs
to none of the n, cosets mentioned above. Let n, be the order of
&=1,00(mod ). Then the wmappings L. U%(0=sk,<n,),
together with L,U* (0=k,<n,) all belong to different right
cosets, since LzU’LI’Ef‘ for all s € Z. Write

na~1

[Dz:‘": U LzUkzﬁ:;.
=0 ‘

Then D, is formed from n; adjacent fundamental regions for I (1)

and is adjacent to [3;. We proceed in this way. We ultimately obtain

a connected set

A
F:=D,

im}

where
D;Zz U L;Ukiu:h

n, =n{¢, M and ¢ = Loo (1 =i =A). The mappings LU* (0=sk, <
n, 1=i=A) all belong to different right cosets of [" in I'(1) and

A
,LL’:W_):k "=
Further, f Fris adjacent toF, forany T'e f(l), then Te X, where &
is the union of the u’ right cosets mentioned above.

Now F is a subset of a fundamental region for f* and so, by
theorem 2.3.4, the different regions SF for S € " can only overlap
at points of EuP. Further, each region SF has a finite number of
sides and is adjacent at each side to some other region SF (§'e .
1t follows that, if ¢ €[, the finite number (2 or 6) of regions Fr that
meet at { either are all contained in

}ﬂl::z LUJ F73
TeX
or all contained in
Hg:: U E:T. ‘
Tef(1)-X

LR T A

e

e Lo

E
b
¥

WA BYTRLR G
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Thus every point z € H, whether it is an interior or a boundary
point of a region F, is an interior point of H, or H,. Since H is a
connected open subset of C and HAH, #J, it follows that
HAH, = . Hence X = [(1) and it follows that

Y ni=pn (2.4.10)

and that F is a fundamental region for [

We note also that the cusps ¢, and £, are incongruent (mod I).
For otherwise, for some Sef‘, L;00 = 81,00, which imples that
L.U*Ly e [ for some k € Z; this is false. It follows that the A cusps
¢ = L,oo(1=<i=A)of F are incongruent {mod I"). Hence the orbit
[c0] (mod I'(1)) splits up into A different orbits [Z,00 (mod I")
(1=i=2). The number A =A(/") depends only on [ and is called
the number of cusps of the group " Note that each of the A orbits
fL.oois represented by a single vertex of F and so, for 1 =i=A,
V(£ F) consists of the single point . In the general case, for
arbitrary &, A is the number of different parabolic vertex sets.

It is clear that the same process could have been carried out by
using F; in place of F,. Further, instead of grouping fundamental
regions [ at parabolic fixed points, we could have grouped them
together at points of E, (using ;) or E, (using F;); for the above
analysis goes through similarly with V or P in place of U.

For m =2, 3 let E,, split into &, = e.{I") orbits £¢™ (med I).
Then we obtain, analogously to (2.4.10),

=3 n®=3 n® (2.4.11)
i=1 i=1

where ni™ = n ({4, IM;i.e. n{™is 1 or m according as the point /™
is or is not a fixed point for f* The number of incongruent sets of
elliptic fixed points of order m for f is denoted by e, =

e, (1) (m =2, 3). Clearly
{

{em)

Epm nl

em(lmv}m)z ¥ (lwwn:“)msm—-’%. (2.4.12)

m i=1

Note that the eguations (2:4..__10, 11) are particular cases of
(1.1.15) inthe cases § = U, V and P.
We have therefore proved the following theorem.
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Theorem 2.4.3. Let { be a subgroup of () of finite index p and
suppose that [(1) =1 R. Then (i) the regions

F:=JFr and F:=J#;
TeR TeR
are fundamental regions for [ Further the order of any vertex of
F {mod I} is equal 1o half the number of triangles in | containing
points of its vertex se. _

(ii) R can be chosen so that F is a connected subset of C and so
that one of the following conditions hold :

(a) Each one of the A(I") cusps of [ is represented by a single
vertex {: of F, and n({,, I') fundamental regions for (1) meetin ¥ at
e ‘

(b) Each of the e {I") orbits (mod I') of elliptic fixed points in
E,(I") is represented by a single vertex of F of vertex angle m. No points
of E;—Ex(I) lie on the boundary of F. _

(iii) R can be chosen so that ¥ is a connected subset of C and so
that one of the two following conditions hold:

(a) Each one of the A(I') cusps of [is represented by a single
vertex {; of € and n(¢y, I') fundamental regions for I'(1) meet in ¥ at
g
(b) Each of the e (I") orbits (mod I gf elliptic fixed points in
Es(I") is represented by a single vertex of ¥ of vertex angle im. No
points of E;,—Es(I') lie on the boundary of F.

Theorem 2.4.4. Let [ be a subgroup of [(1) of finite index u and
suppose that F(Yy=r % and that

F=JFr
TeR

Then (i) the sides of F can be grouped into pairs A, Aj(j=1,
2,...,8) in such a way that A; €F, A]nFSEUP and Aj= LA,
where L,-ef' (=1, 2,...,5). (ii) No side in any one pair is
congruent (mod I') to any side in another pair. (iii) The regions L7F
and F are adjacent at A, while F and LF are adjacent at A}. (iv) If a
point z describes A, in such a way that the interior of F is on the left,
then Lz describes A} with the interior of ¥ on the right. (v) I is
generated by the s transformations Ly, L,, .. ., L.

A similar result holds for the fundamental region ¥ of theorem
2.4.3 (i).
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Proof. Let A = Tl be a side of F, where I =l and R is U or V; see
(2.4.6, 7). We suppose that A =F. Then A cFrcFand Te &. Now
Frr-rand ¥y are adjacent at A and so, since A isaside of F,Fyr-1 £ F.
Now, for some I € Fand Sed

TR'=L"'S

andFs <F. Then A'1=LA = SR/, which is a side of F; not contained
in Fg. A’ is also a side of F, since the adjacent region Fgz is not
contained in F; for SR belongs to the same right coset as T and, if
Fsg F, then SR = T"andso F;x- =Fs < F, whichis false. Since A"is
aside of F, A = L™'A’is aside also of L ~'F. Similarly A" is also a side
of LF. Thus with each side A of F contained in F there is associated
L e[ such that A’ = LA is a side of F not contained in F.

Each different side A; (f =s) of F contained in F determines in
this way a congruent side A} (j <s) of F not contained inF; since F is
afundamental region for f, A;and A} are not congruentto A if f # .
Further, the method of construction of I shows that the number of
sides A} not contained in F cannot exceed s. This proves parts (i), (ii)
and (iii}, and (iv) is obvious by the conformal property of bilinear
mappings.

Finally, if F, $,F, 55F, ..., 5. F(5; ¢ f’) is any sequence of images
of F, each adjacent to its successor, it follows from {jii) that S,
belongs to the group generated by L,, L,, .. ., L,. Also theset of all
points z in H belonging to regions S, F that can be reached by such
sequences is open, and so0 also is its complement in H, whictk. must
therefore be empty. This completes the proof of the theorem.

The last part of the theorem shows that, if we can construct a
fundamental region for a group [ we can find mappings in [ that
generate [, For this purpose it is particularly convenient to choose
fundamental regions with as few sides as possible, such as are
constructed in parts (ii} and (iii) of theorem 2.4.3, since then the
number of generators is small. Also we may, if we wish, include A
in F instead of A, for any value of j. Further, if A, and A, (i # j) are
consecutive sides on the same arc or straight line segment, and so
are A;and A;, we may count each of A, WA, AjUA]| as a single side.
We note also that, if F is a fundamental region for f, we may obtain
a proper fundamental region for f by omitting a finite number of
points of EUP from F, ’
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If, in theorem 2.4.4, & is chosen so that no two of the fundamen-
tal regions F are adjacent, then the number of pairs of congruent
sides will be 2u, since each Fy has four sides. We note, however,
that for every choice of R the arguments used in the proof yield the
following:

Corollary 2.4.4, Under the assumptions of theorem 2.4.4, the 4u
sides of the regions ¥+ (T € &) can be grouped in two families Ly and
L of pairs of sides (A, A"), where A’ = SA for some S e I'. Each family
contains w pairs and, for R=Uor V,

ﬁ,n ﬂ{(/‘., l\’):/\ == ﬂR,A’m TRIR; T, TE@, TRTMIEF}.
(2.4.13)

Theorems 2.4.3, 4 enable us to construct fundamental regions
for groups and to find their generators, We give several examples
of this in table 3, but first obtain some general results on normal
subgroups of f'(l). If [* is a normal subgroup of f'(l} with finite
index u, then the order n(z, I") of each point z e P (mod I') is the
same; in fact, for each z € P, n(z, I') = na, where ny is the smallest
positive integer r for which U’ elie no=lev [ In exactly the
same way '

n(z, N=n, foreachzek, {(m=273),

where n,, = 1 or m; n, and n, are respectively the smallest positive
integers r for which V* and Prel’ We can therefore classify
normal subgroups f* of (1) according to their type or branch
schema {n,, n,, n.}. We have:

Theorem 2.4.5. If [ is a normal subgroup of finite index w in f(1)
and is of branch schema {n,, ns, n}, then

=126 = N3E3 = N, (2.4.14)

where &,, £5 and A are the number of orbits into which E,, &5 and P
split (mod I'), respectively.
Further, only the following four branch schemata occur:

G {1,1,1), G {2,1,2}, (i) {1,3,3}, Gv) {2,3,n}

Only one group exists of each of the first three schemata, namely
f(l), [?, and [®. In case (iv) w0 =0 (mod 6). (CY. theorem 1.7.5.)

e e g T

UETVR SRR T

ERRE S E Gl g s

BEE Apime by
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Proof. The equation (2.4.14) follows from {2.4.10, 11) and shows
that, if [ has branch schema {2, 3, n}, then x =0 (mod 6).

We prove that if a group [ has schema {1, 3, n}, then n =3, In
the first place, by (2.4.14),

s =nA = ;= 3¢,

so that u =0 (mod 3). Let the fundamgntal regionF of f’, if it exists,
be formed by adjoining images of F,. Since I, P, P* belong to
different right cosetsof I ' in f’(l), we may assume that the region

Fo=F,ulfpuf- (2.4.15)

is a subset of F. Each of its six sides has one endpoint at a point of E,
and such vertices cannot be interior points of ¥, since they are fixed
points for I'; further only two triangles in F can contain such a
vertex. It follows that F=F, and that u = 3.

The transformations L mapping congruent sides of F, into each
other cannot map any one of these three elliptic fixed points i,
Yi—1), i — 1 into another, so that the six sides fall into three pairs
ALAL (=123 withA,=LA, L el (v=1,2,3), where L, L,
and L, have i, 3{(i —1) and i — 1 as fixed points, respectively. We
take

L1:=V, l,z:zi)‘/.P‘3 = V:}_, L2:=[)2 VP—2= Vi
' (2.4.16)

and it follows from (1.3.9) that these three mappings do in fact
generate the normal subgroup [Pofindex3in f‘(l); further 7, P, P?
is a right transversal of /™ in f'(l).

1t can be shown similarly that, when n,= |, the only groups are
f(1) and 2. We already know that the latter is a normal subgroup
of I'(1) of index 2, and arguments of a similar nature to those given
for ? show that it has F, UF, as a fundamental region and is
generated by P and P,:= V™' PV. This completes the proof of the
theorem.

In fig. 5 the fundamental regions of some of the groups that we
have discussed are shown. We note that, since {I, P, P*} is a right
transversal for the groups .2, £, fw(Z) and [, the region
F, defined by (2.4.15), is a fundamentalregion for each of these
four groups. The transformations L, (see theorem 2.4.4) that map a
side A; into a corresponding side A} are, however, different in each
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of the four cases. The generators of the four groups, as given in the
penuitimate column of table 3, are derived from the mappings L,
illustrated in fig. 5. Theorem 2.4.4 can be applied in a similar way
to find the generators of other subgroups of (1) such as r (2) and
£*(1). Note that (2) has schema {2, 3, 2} and that both f(6) and
£*(1) have schema {2, 3, 6}.

Table 4 contains a variety of information about the nine normal
subgroups of i lying between [(6) and f’(l). The rank of each
subgroup is the minimum number of generators. The relations
between the groups are illustrated in fig. 3.

We conclude by observing that, for n > 1, the principle congru-
ence group ['(n) has schema {2, 3, n}, and that the number A (n) of
incongruent cusps is

i (n) 3 (n=2),

-4 (2.4.17)
pYl (n>2).

Table 3. Groups of small index

Alternative

Vertex sets in P

Vertex sets in E5

Vertex sets in ky

generators

Generators

Order

Order

Order

V.P

&

1 ¥,

My

xf*-!
o

P v ipy

VU, Vot

F(L.)FV

2

U, pvpt

U uUtvurty

bG-1

3 F,

fui2)

7,i—1

v, U

v, Vir?

B

i~ -1

3 F;

Fu(2)

w, ot

W, UtV

—

i—-1

-1

ks

Fud

v, U vy,

o

v. evpl ptvp

3

—

i1

Hi~1)

¥3U UF;

6

£

Uw, wuU

1, -1

0,,1,~-1

6  FyulF,

£
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2.5. Further results. The method that we have used for obtaining
fundamental regions for /(1) and its subgroups is convenient for
the purposes we have in mind. However, if we had been consider-
ing the more general case of an arbitrary discontinuous subgroup r
of 2, we should probably have found it advantageous to introduce
hyperbolic geometry and to adopt a slightly different definitionof a
fundamental region. A simple account of this more general theory
can be found, for example, in the book by Lehner (1966), or the
more advanced treatises by Fricke and Klein (1926) and Lehner
(1964) may be consuited. We content ourselves here by sketching
briefly how this general theory could be applied to a subgroup fof
finite index & in fi (1); in this sketch we shall introduce a number of
concepts that we do not define.
The hyperbolic length ds of anelement of arcin His defined by

(ds)*:=y ?*{(dx)’ +(dy)’}, 2.5.1)

so that the hyperbolic length of a piecewise differentiable curve C

inHis
vo=[a=[ {G) @5 e

In asimilar way, the hyperbolic area A (E) of a measurable subset £
of H is defined to be

A(E):—TJJ vy dxdy; (2.5.3)

E

this can be infinite even when the ordinary Euclidean area of E is
finite.

A curve in H is called a hyperbolic straight line if it is either a
semicircle in H centred at a point of B, or is an ordinary straight line
in M that is orthogonal to R, If z, and z, are distinct points of H,
there is a unique hyperbolic straight line passing through z, and 2,
and the arc of this hyperbolic straight line joining z, and z, is the
curve C of smallest hyperbolic length joining z, to z,. The hyper-
bolic distance d(z,, z,) of z, from z, isdefined tobe L(C); if z, = z,,
we put d(z,, z,)=0.

It can be shown that d(z,, z,) defines a metric on H, and the
corresponding metric topology on H is identical with the natural
topology on H. It is convenient to extend this topology from H to H'

.

IR
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by giving each point of P a suitable base of neighbourhoods; see
Lehner (1964), chapter 4.

The hyperbolic metric has the useful property that L(TC)=
L(CYyand A(TE)=A(E)forevery Te . Thus every fundamental
region for I has the same hyperbolic area. Further, this hyperbolic
area is easy to evaluate by using the Gauss~Bonnet formula, which
states that the area of a triangle bounded by hyperbolic line
segments is 7 —(a +pB +v), where a, 8 and y are the interior
angles between the sides. This gives, for example, for a fundamen-
tal region F for f

A(F) = pAF,)=3um (2.5.4)

since F, has interior angles 0, 1= and {7

Different definitions of a fundamental region are given by
different authors. What we have called a proper fundamental
region is called a fundamental set by Lehner (1966) and

- Schoeneberg (1974). In his two books Lehner defines a subset D of

H to be a fundamental region for fif (i) Dis open in M, (ii) no two
distinct points of D are congruent modulo I” and (iii) every point of
H is congruent to a point of the closure D of D in H. On the other
hand, Macbeath (1961) takes I} to be closed and modifies (ii)
accordingly. The interior of either of the fundamental regions F or
F of theorem 2.4.3 is a fundamental region according to Lehner.

Let zoe H—E(I") and define D = D(z,) to be the set of all points
z e H such that

d(z, zo)<d(z, Tz,)

forall Te f'except T =+ It can be shown that D is a fundamental
region in the sense of Lehner and that it is bounded by a finite
number of segments of hyperbolic straight lines. This fundan.ental
region is called a normal polygon or a Dirichlet region.

For theoretical purposes the normal polygon has many advan-
tages as a fundamental region, but in individual cases it is not so
easy to construct as the fundamental regions set up in theorem
2.4.3, An alternative method due to Ford (1929), which is also
easily applicable in particular cases, defines I3 to be the region of H
contained in S,, and outside all the isometric circles |T:z|=1
(Tel', c #0); see also Rankin (1954). This again yields a region
bounded by segments of hyperbolic straight lines. When applied to
I (1) the isometric circle method gives the interior of I,
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Each subgroup [ has associated with it a Riemann surface,
which is obtained in the following way. The set of orbits fz(zeW)
is denoted by H'/I" and, when given the identification topology
induced by congruence modulo I', becomes a connected Hausdorfi
space, which is, in fact, a Riemann surface. Its points are in
one-to-one correspondence with those of a proper fundamental
region F for [ Tt is convenient to regard H'/I" as being constructed
from F by identifying pairs of congruent sides A;, A} (see theorem
2.4.4). The Riemann surface H'/I" has H' as a branched covering
surface. At points of H—E(I) the covering is unbranched; at a
point of E, (I") there is a branchpoint of order k ; at points of P there
are logarithmic winding points.

The surface H'/I" is compact and has finite genus g = g(f). The
images of the triangles F’ and F® (see (2.4.2, 3)) provide a natural
triangulation of H'/I” from which it is possible to show that

g=1+ip—A—e;—¢€3) (2.5.5)

Here, asin §2.4, A is the number of incongruent cusps {mod I') and
£, is the number of incongruent points of Eq (mod I {k =2, 3);
see, for example, Gunning (1962), §4, theorem 5 or Schoeneberg
(1974), chapter 4, §7. It follows from (2.4.12) and (2.5.5) that we
also have

(e _Ezwz,ﬁz)‘
g~1+2(6 r-2-22). (2.5.6)

In particular, when [ is a normal subgroup of 1'(1) with branch
schema {n,, n;, n}, then, by (2.4.14) and (2.5.5),

gm1+%“@ _____ “J, (2.5.7)

Hy Ha He

A knowledge of the genus of [ is useful when applications of the
Riemann-Roch theorem are made to find the number of linearly
independent modular forms of different kinds for [ However, it is
possible in many cases to obtain exact results without using deep
theorems of this kind, as we shall see. This happens, in particular,
when the genus is zero. In this connexion we note that, by (2.5.7),
g = 0 for all the groups in tables 3 and 4 except for [*(1) and £(6),
which both have genus 1.
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Since, by theorem 2.4.5, f’(n) has branch schema {2, 3, n} for
n =2, it follows from (2.5.7) and theorem 1.4.1 that

ni(n—=6

wm%z—lﬂ(z~§g (n=3), (2.5.8)

while g{f‘(Z)} = 0. It follows that the genus of [(myiszeroforn <35.
We conclude by remarking that it can be shown that a canonical

fundamental region for [ can be constructed having 2n +4g sides

that are segments of hyperbolic straight lines. Here n =2 +e;+e,

and the sides follow each other in the order

gil(n)}=1+

AAAAL AL g WA Vot 2V L Vel oV
Here
Ai=LaA, wj=Mp, vj=Ny, (=i=n1=j=g)

where the mappings L, M;, N, belong to [’ Further the first e, of
the L, are elliptic transformations of order 2, the next e, are elliptic
transformations of order 3 and the last A are parabolic transforma-
tions; see Lehner (1964), chapter 7. The group Iis generated by
the n+2g mappings L, M,, N, (1=i=n, 1sj=g). Each elliptic
generator L; satisfies a relation of the form L=/ (k=2 or 3);
apart from these relations we also have

Lng N LRNI;NgMIINfleNzMglNEE [N MENRMEIN;t =I,
(2.5.9)

and all other relations between the elements of [ are consequences
of the relations given.
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ABSTRACT. We exhibit a simple test (Theorem 2.4) for determining if a given
(classical) modular subgroup is a congruence subgroup, and give a detailed
description of its implementation (Theorem 3.1). In an appendix, we also
describe a more “invariant” and arithmetic congruence test.

1. NOTATION

We describe (conjugacy classes of) subgroups I' C PSLy(Z) in terms of per-
mutation representations of PSLy(Z), following Millington [11, 12] and Atkin and
Swinnerton-Dyer [1].

We recall that a conjugacy class of subgroups of PSLy(Z) is equivalent to a
transitive permutation represention of PSLy(Z). Such a representation can be
defined by transitive permutations E and V which satisfy the relations

(1.1) 1=FE*=V3
The relations (1.1) are fulfilled by

(1.2) = (_(1) é) V= (_} é)

Alternately, such a representation can be defined by transitive permutations
L and R which satisfy

(1.3) 1=(LR'L)*>=(R'L)3,
with the relations being fulfilled by

(1.4) L:(é 1) R:G ‘1))

One can also use permuations F and L such that
(1.5) 1=FE?=(L"'E)3,

with E and L corresponding to the indicated matrices in (1.2) and (1.4), respec-
tively.
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1352 T. HSU

The various notations can be translated using the following conversion table:

(1.6) E=LR'L, V=R"'L,
(1.7) L=EV~1 R=EV~2
(1.8) R=FE'L7'E.

Example 1.1. The permutations
E=(12)(34)(506)(78)(9 10),

(1.9) V=(135)(274)(689),

or, alternately,
L=(14)(259108)(376),

(1.10) R=(179106)(23)(458),

describe a conjugacy class of subgroups of index 10 in PSLo(Z).

Remark 1.2. Note that any concrete method of specifying a modular subgroup can
easily be converted to permutation form. For instance, one way in which a modular
subgroup I' might be specified is by a list of generators. Such a list can be converted
into permutations as follows: First, use the Euclidean algorithm to express each
generator matrix as a product of L’s and R’s, where L and R are the elements in
(1.4). Then enumerate the cosets of I" in terms of these generators and presentation
(1.3). This coset enumeration is easily converted into appropriate permutations L
and R. Similarly, any reasonable membership test for I' can be used to enumerate
the cosets of I', with the same results as before.

2. CONGRUENCE SUBGROUPS AND THE LEVEL
We recall the following definitions.
Definition 2.1. T'(N) is defined to be the group
(2.1) {y€PSLy(Z) | y==+I (mod N)}.

I'(N) is the kernel of the natural projection from PSLs(Z) to SLo(Z/N)/{£I}.
We say that a modular subgroup I' is a congruence subgroup if T contains I'(IV) for
some integer N. Otherwise, we say I' is a non-congruence subgroup.

An important invariant of (conjugacy classes of) modular subgroups is the fol-
lowing.

Definition 2.2. The level of a modular subgroup I', as specified by permutations
L and R, is defined to be the order of L (or the order of R, since L is conjugate to
R7Y).

We need the following result, sometimes known as Wohlfahrt’s Theorem (Wohl-
fahrt [13]).

Theorem 2.3. Let N be the level of a modular subgroup I'. T is a congruence
subgroup if and only if it contains T'(N).

Proof. This amounts to proving that, for congruence subgroups, our definition of
the level is the same as the classical definition of the level. See Wohlfahrt [13]. O
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Theorem 2.4. Let ' be a modular subgroup of level N, and let
(22) <L, R|’I”1, Tro, >

be a presentation for SLo(Z/N)/{xI} which is compatible with (1.4). Then T is
a congruence subgroup if and only if the representation of PSLo(Z) induced by T
respects the relations {r;}.

Proof. From Theorem 2.3, we only need to check if T' contains I'(INV). Now, since
I'(N) is normal in PSLy(Z), T’ contains T'(N) if and only if the normal kernel
of T contains T'(IV). However, the normal kernel of T' is exactly the kernel of the
representation induced by T', and since the relations {r;} generate I'(\N) as their
normal closure, the theorem follows. O

Compare Magnus [9, Ch. III], Britto [4], Wohlfahrt [13], and Larcher [8]. Lang,
Lim, and Tan [7] have also developed a congruence test; see the related paper Chan,
Lang, Lim, and Tan [5].

Example 2.5. Suppose I is the conjugacy class of subgroups specified by (1.10).
Since L has order 30, we need to use a presentation for SLo(Z/30)/{£I}. We find
that SL2(Z/30)/{xI} has a presentation with defining relations

(2.3) 1=1L%,

(2.0 1= (L2, RY) = (L3, RY) = (1, Y

in addition to the relations in (1.3). (The commutator [z,y] is defined to be
7y lzy, so 1 = [z,y] means “r commutes with 3”.) Only the commutator
relations (2.4) need to be checked. However,

(2.5) L*=(298510)(367),

which does not commute with

(2.6) RY =(23),

so I' is a non-congruence subgroup. (It is worth mentioning that Larcher’s results
also imply that T' is non-congruence, since L does not contain a 30-cycle.)

Remark 2.6. The results in this section extend essentially verbatim to the Bianchi
groups SLa(Oy4), where Oy is the ring of algebraic integers of an imaginary quadratic
field Q[v/—d ] with class number 1. (See Fine [6] for more on the Bianchi groups.)
However, for practical use, one needs a uniform presentation of SLy(Oy4) /2 for 2A
any ideal of Oy.

3. IMPLEMENTATION

To assure the reader that the procedure described by Theorem 2.4 is practical,
we provide the following detailed algorithm. Suppose we are given a subgroup I" of
finite index in PSLy(Z).

1. Describe IT" in terms of permutations L and R. If necessary, use conversion
(1.7), conversion (1.8), or another similar conversion. (See also Remark 1.2.)

2. Let N be the order of L, and let N = em, where e is a power of 2 and m is
odd.

3. We have three cases:

(a) N is odd: T is a congruence subgroup if and only if the relation

(A) 1= (R2L7%)?
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is satisfied, where % is the multiplicative inverse of 2 mod N.

(b) N is a power of 2: Let S = L2°R5 LR~  where % is the multiplicative

inverse of 5 mod N. T is a congruence subgroup if and only if the relations
(LR™'L)™'S(LR™'L) = 571,
(B) S™'RS = R*,
1= (SR°LR'L)?
are satisfied.
(¢) Both e and m are greater than 1:
(i) Let 1 be the multiplicative inverse of 2 mod m, and let 1 be the multiplicative
inverse of 5 mod e.
(ii) Let ¢ be the unique integer mod N such that ¢ = 0 (mod e) and ¢ = 1
(mod m), and let d be the unique integer mod N such that d = 0 (mod m)
and d =1 (mod e).
(iii) Let a = L¢, b= R, 1 = L r = R% and let s = [20p5]~ 41,
(iv) T is a congruence subgroup if and only if the relations
1=/a,r],
1= (ab"ta)*,
(ab™ta)? = (b~ ta)?,
©) (ab~'a)* = (b*a™2)?,
(Ir D) ts(ir ) = 571,
s lrs =%,
(Ir=1)% = (sro1r~ )3
are satisfied.
Theorem 3.1. The above procedure determines if I' is a congruence subgroup.

Before proving Theorem 3.1, we need an algebraic trick (Lemma 3.2) and some
known results (Lemma 3.3, due to Behr and Mennicke [2]; and Lemma 3.4, due to
Mennicke [10]).

Lemma 3.2 (Braid trick). Let x and y be elements which generate a group G and
satisfy the relation

(3.1) (zy)* = (yo)°.

Then the element (zyx)? = (yx)? is central in G. Furthermore,

(3.2) TYTr = Yyry
and
(3.3) (zyz) " a(zyr) = y.

We call this the “braid trick” because (3.2) is the defining relation for the 3-string
braid group.

Proof. The elements X = zyx and Y = yx also generate G, and the element
Z = (zyz)? = (yr)? = X% = Y3 commutes with both X and Y, so Z is central.
(3.2) and (3.3) follow from cancellation in xyxzyr = yryxyz. O
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Lemma 3.3. Let m be an odd integer, and let % be the multiplicative inverse of 2
mod m. SLo(Z/m) is isomorphic to

G= <a, b ‘
(3.4) 1=ad™
(3.5) 1= (abta),
(3.6) (ab~1a)? = (b7 ta)?,
(3.7) (ab~ta)? = (b2a~)? >

Relations (3.4)=(3.7) are fulfilled by a = <(1) 1) and b = (1 (1)) in SLay(Z/m).

Proof. G is equivalent to Behr and Mennicke’s presentation [2, (2.12)] by the fol-
lowing Tietze transformations. Add generators A = b and B = ab~'a. Applying
the braid trick to (3.6), we get that B2 is central, and from (3.2), we also get that

(3.8) BA=b"'a.

(3.8) implies that « = ABA, which means that we can eliminate a and b.
Using (3.3), (3.8), and the centrality of B2, we see that (3.4)—(3.6) become

(3.9) 1=Am=pB!
(3.10) B? = (AB)?,

so it remains to convert (3.7) to Behr and Mennicke’s form. However, applying
(3.3), we have

(3.11) B? = (b%a~?)% = (A’B~'A?B)?,
so, using 1 = B® and the centrality of B2,
(3.12) 1=(A’2B 'A*B)*B® = (A2BA*B)*. O

Lemma 3.4. Let e = 2™, let % be the multiplicative inverse of 5 mod e, and let
s = 1205141, SLy(Z/e) is isomorphic to

G = <l,r
(3.13) 1=1°,
(3.14) 1= (Ir—1)4,
(3.15) (Ir71)2 = (r10)3,
(3.16) (Ir )" ts(lr= ) = 571,
(3.17) s lrs = 1?5
(3.18) (r=11)? = (sr5lr_1l)3> :

al= O
N———

Relations (3.13)—(3.18) are fulfilled by 1 = <(1) 1), r= <1 (_D, and s = <8
in SLy(Z/e).
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Proof. As the reader may verify, the relations (3.13)(3.18) and s = (20p5]~4p~!
are satisfied in SLy(Z/e), so it suffices to show that G is a homomorphic image of
Mennicke’s presentation [10, p. 210]. Add generators A =r, B =Ilr~!,and T = s.
Applying the braid trick to (3.15), we get that B? is central, BA = r~l, and [ is
conjugate to A~1. As in the proof of the previous lemma, we can then eliminate
generators [ and r. Then (3.13), (3.14), (3.15), (3.16), (3.17), and (3.18) become

Mennicke’s relations (X), (Y), (P), (Z), (Q), and (R), respectively. |
For Lemma 3.5, we consider the following relations:

(3.19) 1=1L"N,

(3.20) 1=a,r],

(3.21) 1=1[b1],

(3.22) 1= (abta),

(3.23) (abta)? = (b ta)?,

(3.24) (ab~'a)? = (bPa"7)3,

(3.25) 1= (r~1)4,

(3.26) (Ir=1)2 = (r10)3,

(3.27) (Ir D)7 ts(lr= ) = 571,

(3.28) s lrs = 1?5

(3.29) (Ir=)% = (sro1r= )3,

All notation is as described in (2) and (3c)(i-iii) of the algorithm. Note that 1 = LV
implies that L = al and R = br.

Lemma 3.5. SLo(Z/N) has a presentation with generators L and R, and defining
relations (3.19)~(3.29). The relations are fulfilled by L = <(1) 1) and R = (1 (1))
in SLo(Z/N).

Proof. The Chinese Remainder Theorem implies that

(3.30) SLy(Z/N) = SLy(Z/m) x SLay(Z/e).

It also follows from the Chinese Remainder Theorem that, if L = <(1) 1

G (1)) in SLy(Z/N), the SLy(Z/m) factor is precisely (a,b) and the SLy(Z/e)
factor is precisely (I, 7). Therefore, the above relations are satisfied in SLy(Z/N).

On the other hand, since (3.19) implies (3.4) and (3.13), comparison with Lem-
mas 3.3 and 3.4 shows that the above presentation is the direct product of SLo(Z/m)
and SLo(Z/e). The lemma follows. |

)andRz

Proof of Theorem 8.1. After steps 1 and 2 of the procedure, we know that the
relations

(3.31) 1=1L",
(3.32) 1=(LR'L)?
(3.33) 1= (R'L)?
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must be satisfied. From Theorem 2.4, we see that if (3.31)—(3.33) and (A) (resp.
(B), (C)) are defining relations for SLo(Z/N)/{+I} when N is odd (resp. N is a
power of 2, and e and m are greater than 1), then Theorem 3.1 follows. Comparing
(A) and Lemma 3.3, with ¢ = L and b = R, and comparing (B) and Lemma 3.4,
with [ = L and r = R, the first two cases follow easily, so it remains to check the
third.

Comparing (C) and (3.19)—(3.29), we see that it is enough to show that given
(3.31)—(3.33) and (3.19)—(3.29), the relations (3.21), (3.25), and (3.26) are redun-
dant. First, (3.31), (3.32), (3.20), and (3.21) give us

1=(LR™'L)*
(3.34) = (alr~'ptal)*
= (abta)*(Ir )4,

which means that (3.22) implies (3.25). Similarly, (3.31), (3.32), (3.33), (3.20), and
(3.21) imply

(LRL)? = (R'L),
(ab™Ya)?(Ir11)% = (b~ a)3(r—11)3,
which means that (3.23) implies (3.26). Finally, since (3.32), (3.33), and the braid

trick (3.3) imply that L is conjugate to R~!, we can eliminate (3.21), since it is
implied by (3.20). |

(3.35)

For hand calculations, and for further study, we note the following relations
which occur in SLy(Z/N):

(SLo) Z = (LR 'L)*=(R'L)* 1= 27
(level) 1=L" =RN,
(ab=0 (mod N))
1 =[L* R,
(ab=-1 (mod N))
(LR")* = Z,
(ab=—-2 (mod N))
(L°R")? = Z.

It has been verified by coset enumeration that the relations (SLs), (level), and
(ab = 0 (mod N)) are defining relations when N | 360. This means that if the
level N divides 360, the congruence test reduces to checking that the relations
(ab=0 (mod N)) are satisfied.
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APPENDIX A. AN ARITHMETIC CONGRUENCE TEST

In this appendix, we present an arithmetic and “invariant” congruence test which
uses the Thara modular group SLo (Z[%] )
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We begin by quoting the following result (Theorem A.1) of J. Mennicke [10].
(Note that Mennicke’s Schur multiplier calculation and subsequent argument re-
quire the repairs described in F.R. Beyl [3, §5], but the main result still holds.)
Let N be an integer, let p be a prime not dividing N, let Ry be the kernel

in SLo (Z{lD resulting from reduction mod N, and let Qn be the normal clo-

core o L SL (2] 1] ).
Theorem A.1. Ry = Qn. O

Let T’ be a modular subgroup of level N and index m in SLy(Z). Consider the
commutative diagram in Figure A.1.

SLy(2[ ;1) - = SLy(Z/N)
éfl SL,(Z) fZE
; & ;
e 0 e :

FiGURE A.1. Commutative diagram for Theorem A.2

Here, Sy, is the symmetric group on m objects (the cosets of I in SLo(Z)), r is
reduction mod N, i is inclusion, and p is the permutation representation of SLo(Z)
induced by I'. Note that fo exists if and only if I' is a congruence subgroup, and
that such an f5 is uniquely determined.

The setup in Figure A.1 provides us with an invariant congruence test.

Theorem A.2. In the notation of Figure A.1, a map f1 exists if and only if fo

exists. In other words, T' is congruence if and only if p can be factored through

inclusion in SLo (Z[}l—)
Proof. If f, exists, let fi = for. Conversely, if f exists, since L"V is in the kernel

of p, L must be in the kernel of f1, so in fact, f; is well defined on
(A1) SL, (ZH)/QN - SLQ(ZBD/RN ~ SL,(Z/N),
which means that f; defines an appropriate map fs. O
Corollary A.3. In Figure A.1, f1 is determined uniquely if it exists. O

One curious feature of Theorem A.2 is that if we know a given family of modular
subgroups all have levels relatively prime to p, then we can handle all of them in
a uniform manner. This is the principle behind Behr and Mennicke’s presentation
of SLy(Z/N) for N odd, as these cases can be handled in SLz(Z[3]).

We also note that if we fix the level N, then we can choose any p not dividing
N to use in Theorem A.2. This leads to the following idea: For a given family of
modular subgroups of level N, it seems plausible that one might be able to reduce
the extensibility of p to the question of whether there exists a p which satisfies
certain congruences mod N. Dirichlet’s theorem might then be used to find a p
which satisfies those congruences.
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Preface

These are the notes of a cours de DEA avancé held at Bordeaux in spring
1998. The aim of the course was to introduce the notion of height, one of
the basic ingredients in Diophantine geometry, in an elementary and easy
to understand manner, with the emphasis on results, open problems and
‘highlights’ instead of abstract theory.

Accordingly we start in Part 1 with the classical Lehmer conjecture and
discuss the important theorems around and towards this conjecture. In par-
ticular, we discuss Langevin’s theorem and Zhang’s theorem. When I pre-
pared the course, it came to my mind that the theorem of Langevin, the
more recent theorem of Zhang and the long-known result of Schintzel on
the absolute bound for heights of real-algebraic numbers seem to have some
deep analogy. In the present notes I tried to work this out, and in the end I
managed (at least) to give a sort of unified proof for these results.

In Part 2 we discuss, after a generalisation of Zhang’s theorem to plane
affine algebraic curves, heights on elliptic curves. We discuss in an explicit
manner the method of infinite descent (and Mordell’s theorem), and the local
decomposition of the canonical height, i.e. the “local Green’s functions” on
an elliptic curve. In the Appendix (which is actually an examination given
to the students at the end of the course) the reader finds a sketch of how to
compute explicitly the canonical height function on an explicitly given cubic
algebraic curve.

A logical step would have been a third part treating Green’s functions an
algebraic curves of arbitrary genus, and, in particular, to have very concrete
examples, a part treating Green’s functions on modular curves.

These notes are still preliminary: a section on elliptic curves is missing
(section 2.4), more recent considerations on the relation of Mahler measures
and special values of certain L-functions and Mahler measures as entropy of
certain “algebraic dynamical systems” are missing. Also the list of references
is not complete, and the Appendix is in French. Maybe we shall come back
to this (and also the Part 3) at another occasion.

We finally note that parts of Part 1 are based on a course given by the au-
thor in the Max-Planck-Institute fiir Mathematik in spring 1993. Criticism,
comments and pointers to typos are welcome.

Talence, March 8, 1999
Nils-Peter Skoruppa
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Part 1

Heights of Algebraic Numbers

It is natural to try to associate to an algebraic solution of a Diophantine
equation a measure of complexity. This is natural in view of the problem of
computing and storing such a number, but it has also a theoretical signifi-
cance if the measure of complexity can be chosen such that the number of
measured objects in question below a given bound is always finite.

In this first part we shall consider the problem of finding such a measure
for algebraic numbers. This will lead to the notion of height for numbers.
We shall discuss various properties of the height function, and in particular
we shall discuss the Lehmer conjecture.

1.1 The height of a rational number

Assume that a = ¥ is a rational number, say ged(z,y) = 1. We define its

height by
H{(e) := max([z], [y]).

This clearly measures the complexity of « in the sense of how many infor-
mation do we need to describe a.. Indeed, log H () is roughly the number of
digits needed to write down the numerator or denominator of . Moreover
it is clear that the set

{a €Q: H(a) < B}

is finite for any real B.

There is one important property that one can already read off in this
more or less trivial situation. The height function possesses a decomposition
into local factors. We explain this in detail.

Recall that to each (rational) prime p we can associate the valuation |- |,
of Q defined by

—n

|a|P =P

1
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where p" is the exact power of p in the prime decomposition of a.. A valuation
of a field K is a function v : K* — R5( such that v(a) = 0 if and only if
a = 0 and satisfying

v(af) = v(a)o(B), vle+F) <wv(a)+v(f)

for all o, 8 € K*. Two valuations v and w are called equivalent if there is
a real number s > 0 such that v(a) = w(«)® for all & € K. Any valuation
of Q is either equivalent to a | - |, or to the usual absolute value on Q which
we denote by |- | [Neuk], p. 124. The latter writing suggest that the set of
primes of Q should be completed by a “prime at infinity”.

Theorem 1.1. For each rational number o # 0 one has
H(a) = max(1, |a|s) Hmax(l, ).
p

Proof. As before let x and y denote the numerator and denominator of «.
The contribution from the pth factor on the right equals p=", where p" is
the exact divisor of «, if n is negative, and it equals 1 otherwise. Thus the
product over the primes equals |y|. The factor before the product is 1 if
|z| < |y|, and it is |z|/|y| otherwise. This proves the formula. O

In view of the theorem it is reasonable to call the function
Hy(a) = max(1, |al,)

the local height of o at the prime p. The decomposition formula of H can
then be rewritten in a more compact form as

H=]]H,
p

where this time p runs through the finite primes and p = oco.

1.2 The Mahler measure of a polynomial

An algebraic number « is, up to “equivalence”, described by its unique nor-
malised minimal polynomial f. By the last we understand the minimal poly-
nomial whose coefficients are in Z and are relatively prime. Discussing the
complexity of « is thus equivalent to discussing the complexity of f.

To measure the complexity of a polynomial

f=a, X"+ ap 12"+ +ag € Zz]
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we may consider the number

n
[l =l
=0

This is in essence the number of digits needed to write down f. However,
one might find good arguments to consider

e = max |

fll2 == +/ai + - +ag
as complexity measure.

Obviously we would prefer a unique, canonical one instead of many. Now
the above three examples all come from a norm on the real vector space R[z],
of real polynomials of degree less or equal to n. All such norms are equivalent,
ie. if | - | is any norm on R[z],, then there exist constants A, B > 0 such
that

or

Alflee <11 < Bl flo

for all f (exercise). Suppose we could construct for any f in a canonical
way a sequence of polynomials f; of degree less or equal to n such that, for
any norm ||| - |, the measures |f.|* are roughly |f], and such that |f|*
converges. By the last property the limit would not depend on the special
choice of the norm as follows easily from the equivalence inequalities (see the
proof of the next lemma for details). The limit can thus be considered as a
good candidate for a canonical measure of complexity.

Such a sequence f; can indeed be constructed. Let, for the following, f
denote a polynomial with complex coefficients, say

n

flx)=apa™ -+ ay= anH(x— a;).

Jj=1

We define
filw) = dt [[(@ = ob) = (=) T far¢).

Here the product is over all kth roots of unity. One might think of | f;|*/*
as being obtained by a sort of averaging over the roots of f. Note that
fr has rational coefficients if f has rational coefficients (since f is invariant



4 PART 1. HEIGHTS OF ALGEBRAIC NUMBERS

under the Galois group of the decomposition field of f), which are, moreover,
integral if those of f are integral.
We define the Mahler measure of f by

p(f) = lao| T max(1. o).

Thus p(f) is, up to the number |a,| the product of the roots of f outside
the unit circle, where multiple roots are repeated. We shall need a formula
expressing p(f) without making explicit reference to the zeroes of f.

Theorem 1.2. (Jensen’s formula) For any f € C[X], f # 0 one has

log u(f) = / “log | £(e)] dr.

Proof. Since the logarithm is additive It suffices to consider the case f(z) =
z —a. If |a] > 1 then log|f(z)| is a harmonic function in a neighbourhood
of the unit circle, and hence the integral equals

log | f(0)] = log al.

If |a] < 1 then g(z) =1 — @z has no zeroes in the unit circle, and log |g(x)|
is a harmonic function in a neighbourhood of the unit circle. Moreover,

lg(2)| = |f(2)] on the unit circle. The integral in question thus equals the
same integral but with f replaced by g, i.e. it equals
log[g(0)| = 0.

Finally, if |o| = 1, then
1 27

, 1 [ ,
— log|e”—a|dt:—/ log [e" — 1| dt =0
2 0 2 0

(exercise). O

The actual formula known as Jensen’s formula in complex analysis applies
to a slightly more general functions than only to polynomials as stated in
the theorem [ALlf], p. 205.

We need a second property of the mahler measure.

Theorem 1.3. (Norm inequality) For all 0 < j < n one has

jaj] < (;?)u(f).
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Proof. This is an immediate consequence of
a; = (=1)"a, > Qjy + e O,
(it yeeesin—j {1y}
and the very definition of the Mahler measure. ]

We are now able to explain why the Mahler measure is the canonical
complexity measure we are looking for.

Theorem 1.4. Let || - | be a norm on the real vector space Clx],,. Then, for
any polynomial f € Clx],, one has

Tim % = ().
Proof. From the equivalence inequality we obtain
AYEfellhs < 1l < BYF| fil 3

Thus, if the theorem holds true for the | - |-norm, then it holds true for all
norms.
For the | - |-norm we have

p(f) < (41D [flloe <2%(n +1) u(f).

The first inequality follows from Jensen’s formula for u(f) on using
|f(z)] < (n+ 1) max |a;]

for || = 1. The second one is an easy consequence of the norm inequality.
Now by the very definition of p(f) one has

u(f) = nlfi) 7.

Combined with the above inequalities this gives

1/k n
() < [+ 1) Ufiloe] ™ < 127004+ 115l ).
Letting k tend to infinity we recognise the asserted formula. [

We note that there are other possibilities for defining the complexity
of a polynomial f over Z. One might consider for example |f(1)], i.e. the
absolute value of the sum of the coefficients of f. Again |fx(1)] — pu(f):
indeed 1 log | f(1)] is just the n—th Riemann sum approximating the integral

defining log p(f).
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In the computer algebra system Pari [Pari] one finds the function “polred”
which finds for a given unitary integral f of degree n a new polynomial g
which defines the same number field but which is (probably) minimal with

respect to the function
(f)=yad+--af

[CoDi. It is easy to verify that Again I(f,)* tends to u(f) for any f.
We note two simple but remarkable properties of the Mahler measure.

Theorem 1.5. Let f and g be any complex polynomials. Then

u(fg) = pw(Hulg),  w(f) = nlf).
Here f* is the reciprocal polynomial of f, i.e. f*(z) = x9S f(1/x).
Proof. The first identity is evident from the definition of x. The second one

is equivalent to
ol {0
|an| =1 ’

]

By the norm inequality we see that, for any degree n and any bound B,
there are only finitely many polynomials f € Z[x], such that u(f) < B. In
particular, for any real A the number

inf{u(f) : f € Zlz]n, p(f) > A}

is strictly greater 0 and is attained by a finite number of f € Z[z]". Obviously
the Mahler measure of an integral polynomial is always greater or equal to
1. Thus it is natural to ask first of all for those polynomials with Mahler
measure 1. This question is answered by a classical theorem.

Theorem 1.6. (Kronecker) Let f € Z[X]. Then pu(f) =1 if and only if all
roots of f are roots of unity or 0.

Proof. Assume that inZ[z] has degree n and Mahler measure 1. For the j-th
(k)

i of fi we have by the norm estimate and since u(fx) = 1 the

k n
i < (;)

Thus the set of all f; is actually finite. Hence, the set of all roots of all f,
is finite. In particular, if o is a root of f then the «, cannot be pairwise
different. Consequently o = o' for some k > [, i.e. either & = 0 or else
aft=1.

The inverse direction of the theorem is trivial. O

coefficient a
estimate



1.2. THE MAHLER MEASURE OF A POLYNOMIAL 7

The theorem is usually cited in the form that an integral algebraic number
whose conjugates are less or equal to 1 is necessarily a root of unity. Note
that the statement in this form becomes false if one drops the integrality
assumption; counter example: %.

In view of the preceding theorem one is naturally interested in the num-

bers
nf{u(f) : £ € ZIX]u u(f) > 1}

and the polynomials realizing these Mahler measures. For a given degree n
these minimizing polynomials are easy to calculate. In fact, one simply lists
all polynomials f € Z[z|, with, say, p(f) < 2. This list is not empty since
p(x —2) = 2, and it is contained in the finite set S, of all integral f with

d
|aj| < Q(j)

by the norm inequality. Thus this list can be compiled by searching S,,.
However note that e.g. for n = 4 the set S; comprises already

(4(3) + 1)2(4(;1) +1)%(4 (;1) +1) = 180625

elements. This can of course be cut down by some factor on using pu(f*) =
w(f), £u(f(£x)) = p(f) by rejecting all polynomials with leading and con-
stant term different from £1. In Table 1.2 we listed the result of such a
computational research for degrees n < 5.

n [ ulf) disc(f)
1 r—2|2 2
2 2 —x—1[1.618... 5
3 —xr+111.324... —23
4 xt—23—-11]1.380... —283
5|’ —at+a3 —x4+1]1.349... | 17-97

Table 1.1: This table gives, for a given degree n < 5, a polynomial f from the
set T,, whose Mahler measure is minimal. Here 7,, is the set of all irreducible
polynomials in Z[z] of degree n with Mahler measure strictly greater than
1. The respective minimum is also attained by the polynomials 4+ f(4x) and
+a" f(+1/z), but by no other ones in 7.

1933 Lehmer conjectured [[.ehm] that even the number

py = A{u(f) : f € Z[X], p(f) > 1}
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is strictly greater than one. He even conjectured that ji, is assumed by the
polynomial

4

fr@)=a"+2" —2" —2® -2 —2' -2+ + 1.

Here

u(f) = 1176 ...

The conjecture is still unproven and Lehmer’s lower bound is still not beaten.
A huge amount of computations has been done [Boyd] giving evidence to
Lehmer’s conjecture.

1.3 Pisot and Salem numbers

In view of the Lehmer conjecture it is an amusing sport to find polynomials
f in Z]x] with minimal Mahler measure u(f). A first naive approach is to
look at polynomials with small | f]. norm, say with coefficients equal to +1.
Systematic searches in this direction have been done e.g. in [Boyd].

A more theoretic approach is to search for algebraic numbers who are
not “too far away” from roots of unity. Indeed, since the Mahler measure
is multiplicative and greater and equal to 1 it suffices to look at irreducible
polynomials f. Moreover, since u(f) is greater than or equal to the constant
and the leading term of f, it suffices to look at polynomials where both are
equal to 1, i.e. at minimal polynomials f of algebraic units a. Now, one might
expect that the Mahler measure p(f) is small if many of the conjugates of «
lie in the unit disk or on the unit circle.

An integral algebraic number « is called a Pisot number if o > 1 and all
its conjugates o/ satisfy |o/| < 1. It is called a Salem number if o > 1, if all
its conjugates o’ satisfy |o/| < 1, but if at least one o satisfies |o/| = 1.

A Salem number satisfies actually a stricter condition.

Theorem 1.7. Let f be the normalized minimal polynomial of a Salem num-
ber 7. Then f* = f.

Proof. Let 7" be a conjugate of 7 on the unit circle. Then 7’ is a root of f and

of f*. Thus f*=+f. If f*= —f then f(1) = 0, which is impossible. Wl

Hence, for a Salem number 7, the set of its conjugates is stable under
z + 1/z. In particular, a Salem number is a unit, and moreover we have:

Corollary 1.7.1. An algebraic integer 7 is a Salem number if and only if
1/7 is conjugate to T and all other conjugates of T have absolute value 1.
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There are infinitely many Pisot numbers. Indeed, if « is a Pisot number,
then so are the powers a™ (n = 1,2,...), respectively. Moreover, the integers
are trivially Pisot numbers, and %5 is one. It is easy to construct others
using the theorem of Rouché: If f and ¢ are two polynomials such that
|f(2) = g(2)] < |g(2)| for all z on a circle C' : |z] = R, then f and g have
the same number of zeroes (counting multiplicities) inside the circle |z| < R.
(Since the inequality implies that F' := f/g satisfies |F(z) — 1| < 1 on C,
i.e. the curve F o C is contained in the open disk |w — 1] < 1, and hence its
winding number fcdlogF around 0 equals 0. But this winding number is
the number of zeros minus the number of poles of f/g contained in |z| < R.)

Theorem 1.8. Let f = 2" + a, 12" ' + -+ + ag € Z[z] such that
L+ fan—o| + |an—s| + -+ lao| < |an-].

Then exactly one root o of f satisfies oo > 1, and all other roots o/ satisfy
|o/| < 1. In particular, o or —cav is a Pisot number.

Proof. The inequality implies |f(2) — a,_12""!| < |a,—12""!| on the circle
|z| = 1. By Rouchés theorem f has thus n — 1 roots inside the unit disk
|z| < 1, and since |ag| > 1, it has then exactly one root « outside the unit
circle. Since @ is also a root of f we have @ = «, hence o or —« is real and
greater that 1. O

The smallest Pisot number has been determined by Siegel [Sieg]. It is the
real root of
3

fs=x"—z—-1

(see section 1.8).
For Salem numbers there is a construction due to Salem, also based on
Rouché’s theorem.

Theorem 1.9. Let f be the minimal polynomial of a Pisot number of degree
greater or equal to 3, let k = +1, and set p, = 2" f + kf*. Then there is an
ng such that, for any n > ngy, one root of p, is a Salem number.

Proof. We leave it as an exercise to show that there is some ny such that
for all sufficiently small ¢ > 0 and all n > ng one has [z"p(z)/p*(2)| > 1,
Le. |pn(z) — 2"p(2)| < |2"p(2)|, on the circle |z|] = 1 4+ . Hence p, has
n + degp = degp, — 1 zeroes on |z| < 1, and exactly one, say «, outside
the unit circle. Since p; = =£p,, the set of zeroes of p,, is invariant under
z + 1/z. Hence all zeros different from « and 1/a must lie on the unit circle
|z| = 1. O
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It is not yet known whether there is a smallest Salem number. A proof (or
disproof) of this fact would be an important contribution towards deciding
the Lehmer conjecture. The smallestknown Salem number can be obtained
by Salem’s construction:

s —fo=a —x—1)— (-2 -2+ 1) = (z - 1) fy,

i.e. the unique root outside the unit circle of the polynomial f; of Lehmer
(see the end of last section), which has the so-far smallest known Mahler
measure.

1.4 The height of an algebraic number

Before discussing further the Mahler measure and the known results in the
direction of the Lehmer conjecture, we introduce its more number theoretic
counter part, namely, the height of algebraic numbers. For an algebraic
number « of degree n we define its “absolute” height by

H(ar) = ()",

where f is the normalized minimal polynomial of a. The normalizing power
1/n is usually inserted to have a decomposition formula of the height func-
tion in local contributions which does depend on the field from which the
valuations are taken. We shall explain this more precisely in a moment (see
the proof of the next theorem).

If we set

then

d 1/n
H() = [|ad| [T max(t.Jos)]

Note that this generalizes the height of a rational number defined in the first
section. Indeed, if o = % with relative prime integers r, s, then f = sz —r,
and hence pu(f) = |s| if |r] < |s|, and p(f) = |r| otherwise.

As for the height of rational numbers one has a decomposition into lo-
cal height contributions. We recall first of all the relevant facts about the
valuations of an arbitrary number field K.

An equivalence class of valuations of K is called place of K or a prime of

K. We always use Pk for the set of places of K, and we use Py for the set
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of archimedean places of K, i.e. the set of equivalence classes of valuations
which extend the usual absolute value on Q (up to equivalence).

The representatives | - |, for the places v of K can be chosen in a unique
way that one has

II ol = Ngs(a)l

vEP (K)o

I el =1.

vE Pk

and

for all @ € K. We always assume that | - |, is normalized in this way.
One can describe the | - |, explicitly as follows. To each prime ideal p of
K one can associate a valuation by

lady = Nxja(p) ™,

where p* is the exact divisor of a. This valuation satisfies the stronger
triangle inequality
a4 By < min(|aly, [5],)

with equality if |a, and |3|, are different.

Let 0; : K — R (1 < j < r) be the real embeddings of K, and let
0;,0; : K — C (r < j <r+s+1) be the pairs of complex embeddings of
K. Then, for each 7 we have the valuation

|al; = loj(@)]7,

where the bars on the right indicate the usual absolute value in R or C, and
where e; = 1 if 0 is real, and e; = 2 if 0, is complex.

It is a known fact that for any place v of K the valuation |---|, equals
| - | for some p if it is finite (i.e. non-archimedean), and that it equals | - |;
for some j otherwise.

We shall also need the following two facts. Let L be a finite extension of
K. Then the compatibility formula holds true, i.e.

ol =TT lal.

w€|PL
for all v in the ground field K. Here w|v means that | - |, is an extension of
| - |» up to equivalence. Example: For 5 = (1+2i)(1 —2¢) and K = Q(i) one
finds
15125y = [5(1420) 5] 1—21),
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where on the left we have the 5-adic valuation on Q, and on the right the
corresponding valuations on Q(7).

If L is galois over K then, for any place v of K the Galois group Gal(L/K)
acts transitively on the places w of L dividing v.

We are now in the position of proving the following decomposition formula
for the absolute height.

Theorem 1.10. Let K be a number field and o € K. Then one has

H(o) = [] max(1, |al,)/*

vE Pk

Proof. Note first of all that the value of the right hand side does not depend
on the field K. This is an immediate consequence of the compatibility formula
and the fact that |a|, < 1 if and only if ||, < 1 for all w|v in any extension
Lof K.

The formula is trivial in the case that K = Q(«) and « is integral. Indeed,
in this case |a|, < 1 for all finite places v, and hence the [K : Q]th power
over the local contributions equals

Hmax(1,|0j(oz)|) H | max (1, 0;()?),

j=r+1

with o; having the same meaning as before. But this is exactly p(f).
In the general case one can proceed as with the case of an integral a to
prove

H(a) = |a,|"/@@)Q H max(1, o, )/,

vePR

where |a,| is the leading term of the normalized minimal polynomial of f.
Hence it remains to relate |a,|, the leading term of the normalized minimal
polynomial of f to the factors associated to the finite primes of K.

For this one uses Gauss’s lemma [Heck], p. 105:

cont, (g1g2) = cont,(g1) cont,(ga).
for all g1, g2 € K[X], and all finite places v of the number field K. Here

conty (amx™ + -+ - + apg) = max |a,,.
J

By enlarging K if necessary, we may assume that K is Galois, say with
Galois group G, and contains all roots of f. We can write f in the form

f=ay H (;E — a(a))l/[K:Q(a)].

oceG
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Let p be a rational prime number. We then have

1= COHtp(f)[K:Q( = |any [K:Q(a)] cont,, ( H(x — O’(Q)))

oeG
= ’an|1[DK:Q(a)] H Hcontv(:c _ 0<&))1/[K:Q]
e ’U|p
|an|KQ ]HHmaX (1, |o( )1/[KQ
vlp o€G

= l|a, |[KQ Hmax (1, |aly)

Here the second identity follows from Gauss’s lemma, the third one from the
compatibility relation and Gauss lemma, and the last since G acts transitively
on the places of K dividing p. Thus we find

|a,| = H al = H Hmax(1,|a]p)1/[K:Q(“)],

p finite ‘ n|p p finite v|p

which implies the asserted formula. O

Sometimes one defines for a number field K the relative height function

Hy on K by by
= H max(1, |al,)
’UEPK

In particular one has
Hgay () = p(f)

, where f is the normalized minimal polynomial of «.

Since the Mahler measure and the height of algebraic numbers represent
essentially the same notion, one can easily deduce several properties of the
height from the Mahler measure.

For instance, for any degree d and any bound B there is only a finite
number of o € Q of degree less or equal to d with H(a) < B. Moreover

H(a) = H(1/a)

for any « # 0 (since £ f* is the normalized minimal polynomial of 1/« if f is
the normalized minimal polynomial of a. Kronecker’s theorem states states
that, for any algebraic o one has H(a) = 1 if and only if « is a root of unity.
Finally, Lehmer’s conjecture is equivalent to the fact that for some con-
stant C' > 1 one has
H(Oé) Z Cdega
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for all algebraic a.. Note the degree deg a of v in this formula. Without this
degree such an inequality cannot be true. Counter example:

H(2Y™) =2Ym 1.

1.5 Two easy Lehmer type theorems

In this section we prove a theorem of Schinzel from 1973 concerning an abso-
lute lower bound for the height of totally real algebraic numbers, and a more
recent one one of Zhang from 1992 about numbers simultaneously “close
to 0 and 1”7. Both theorems admit surprisingly simple proofs ([HoSk] and
[Zagi]) which are quite similar though they were found independently ' .
In this section we give the the proofs without any additional comment. A
reinterpretation and two possible generalizations will follow in the two next
sections.

Theorem 1.11. (Schinzel [Schi]) Let o # 0,£1 be a totally real algebraic

number. Then
1 5
H(a) > 1/ +2f — 12720,

. . . . 1:|:\/g
with equality if and only if o equals one of the four numbers £,

Note that a theorem like this cannot be true in general, i.e. there is no
absolute lower bound for the absolute height of all but a finite number of
algebraic numbers. Indeed, 2P — a is irreducible for all square-free positive
integers a, and all rational primes p. Thus

H({/a) =a'/? — 1.

Proof. (cf. [HoSK]) If, for z real, we set v(x) = |&|"/2|x — 1 /2|25 then we
have

1++5

v(x),

with equality if and only if z = :I:%g. Indeed, since |x|y(1/z) = y(z), since
the same invariance property holds for the function max(1,|z|), and since
both sides of the desired inequality are invariant under z — —uz, it suffices

IThe second proof differs slightly from the original version given in [Zagi]. When I
prepared this manuscript I noticed that Zagier’s proof could be presented in a form which
makes it look much more similar to the proof of Schinzel’s theorem in [HoSk].
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to prove it for 0 < z < 1. But in this interval maximum of (x) occurs for

r = #ﬁ with maximum value 4/ #g
On the other hand

la [T(eg) = lal' 22 FQ)[ /22201 F () F (1) 2V 2 1
J

where f(z) = a[][(x — «;) is the minimal polynomial of . The result is now
obvious. O

Theorem 1.12. (Zhang [Zhan]) For all algebraic numbers o # 0,1, %:)’,
one has

H(0)H(1 - a) > 1/ +2\/5

with equality if and only if o or 1 — « is a primitive 10th root of unity.
Proof. (Cf. [Zagi]) Here, for complex z, we set

|22 — 2 + 1|>1/2\/g

V(2) = |Z|1/2|1 - Z|1/2< 22 — 2|

It is straight-forward, though cumbersome, to prove

1++5
9

¥(x)

max(1, [z|) max(1, |1 — z|) >

for all complex arguments, with equality if and only if 2 or 1 — equals e*™/5

or eF37/5 With the same notations as in the theorem before we find

14++v/-3 1—\/—3)‘1/2\/5>1
2 2 =

ol [T(es) = 1£O) F @225 ¢ )£

which again implies the result. [

1.6 Numbers with conjugates outside a given
set

The proofs of the two theorems of the preceding section have obviously very
much in common. The both use a function v(z) with remarkable symmetry to
bound max(1, |z|) to below. We formalize the construction of this bounding
function.
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Fix an arbitrary polynomial p # 0 with integral coefficients and a real
number s > 0, and set

v(2) = |21"?|p(2)p(1/2)]°.
Then
2[v(1/2) = ~(2).

Note that we also have
|z| max(1,|1/z|) = max(1, zz|).
Moreover, v(z) and max(1,|z|) are both invariant under z +— Z. Thus if
max(1, |z[) = 7(2)

for z in some subset F of C, then we can assume without loss of generality
that F is invariant under z — 1/z and z — Z. By continuity we can fur-
thermore assume that E is closed. The invariance of z +— 1/z implies that,
for proving the desired estimate, we only have to look at arguments z in the
intersection of E with the unit disk |z] < 1. Using that E is stable under
complex conjugation it even suffices to look at the intersection of E with the
unit circle. More precisely we have the following lemma.

Lemma 1.1. Let E be a closed subset of C invariant under complex conju-
gation and under z — 1/z. Let p € Clz|, and suppose that

sup |p(2)] < 1.
z€E, |z|=1

Then, for all sufficiently small s > 0 there exists a constant C' > 1 such that
max(L,[z[) > C |2]"2[p(2)p(1/2) ],
forall z € E.

Proof. Denote by D the closed unit disk |z| < 1. We claim that there is a
non-negative integer [ such that

a:= sup |Z'p*(2)p(z)] < 1.
zeEND
Indeed, otherwise there would be a sequence z;, in £NID and of non-negative
integers ny such that |z *p*(zx)p(2x)] > 1. Since £ N D is compact, we
may assume that z; converges towards an w € E N D. For this w we have
by continuity |p(w)p*(w)| > 1. If we had |w| = 1 then [p(w)| < 1, hence
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|p*(w)| > 1. But the latter is impossible since |p*(w)| = |p(w)| for |w| = 1,
and since w € E by the invariance of E under complex conjugation. But
then |w| < 1, and hence |p(z;)p*(2)| > |zk| ™™ — oo, which is absurd.
Thus, for any s < 1/2(l + degp) there is a C' > 1 such that the desired
estimate holds for all 2 € END. But this holds then true for all z € E by the
transformation formulas of both sides of the inequality under z +— 1/z. [

The lemma explains how to find a function y(z) as used for instance in
the proof of Schinzel’s theorem: There ' = R, thus any integral polynomial
p with [p(z)| < 1 for x € {£1}, the intersection of R with the unit circle,
would lead to a lower bound C' > 1 for totally real numbers. The polynomial
p(r) = 2? — 1 is certainly the simplest solution, and it it exactly the one
which one finds in our proof.

Now suppose finally that we have an integral p # 0 satisfying the hypoth-
esis of the lemma. Then this yields immediately an absolute lower bound for
the heights of algebraic numbers all of whose conjugates lie outside F.

Lemma 1.2. Let E, p and C > 1 as in the preceding lemma. Suppose
furthermore that p € Z|x] and p # 0. Then

H(a) > C

for all o such that o and all its conjugates are contained in E and different
from 0 and the roots of p and p*..

Since H(a) = 1 for roots of unity «, we see that the existence of a p
satisfying the hypothesis of the lemma implies that, for each integer n > 1,
either C \ E contains at least one primitive root of unity, or else p has all
nth roots of unity as roots. In particular, C\ £ must intersect the unit circle
non-trivially.

Proof. By the preceding lemma we have the following estimate:
H(a)"C™" > |a| | [ (o) = la]"*2 £(0)[V*a’ [ ] Ip(ey)p ()],
j=1 j=1

where [ is the degree of p. But [f(0)| and the factor after it are positive
powers of positive integers. Hence, for s < 1/4l, we obtain

H(a) > C.
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It is certainly natural to start now with a set F, and to ask when we can
find an integral p # 0 satisfying the assumptions of the first lemma. The
answer will be found using the theory of transfinite diameters whose basics
we shall develop in the next section. We shall find as answer:

Lemma 1.3. Let E be a closed subset of C not containing the whole unit

circle and stable under complexr conjugation. Then there is polynomial p €
Zlz], p # 0, such that

sup [p()] < 1.
z€E, |z|=1
Note that the condition that E does not contain the unit circle, is also
necessary. Otherwise we would be able to prove that H(«) is absolutely
bounded below by a constant greater than 1 for all a which are not roots of
unity or 0, which is certainly false (see the counter example H({/2) at the
end of section 1.4. Postponing the proof of the preceding lemma to the next
section we can summarise by saying:

Theorem 1.13. (Langevin [Lvin]) Let G be an open region in C which in-
tersect the unit circle |z| = 1. Then there exists a constant C(G) > 1 such
that

H(a) > C(G)

for any o € Q which has no conjugates in G, which is not a root of unity
and different from 0.

Proof. This is a consequence of the preceding lemmas. For applying the
lemma 1.1 we actually need that G, or equivalently E := C\ G, is invariant
under complex multiplication and z — 1/z. However, this can be assumed
without loss of generality. If 2z is on the unit circle and in GG, then there is an
open neighbourhood of z; and contained in G which is stable under z — 1/Z
(exercise). Clearly, we may replace G’ by this neighbourhood. Secondly,
we may then replace G by the union of G and G* := {Z : z € G}, since
all conjugates of a are outside G if and only if they are outside G*. The
resulting G has then the necessary invariance properties.

By the last lemma we find, for F, a p satisfying the hypothesis of Lemma
1.1. Thus Langevin’s theorem is true for all & # 0 having no conjugates in
G apart from possibly those roots 8 of p or p* which are not roots of unity.
(Note in passing that any [th root of unity has a conjugate in G if [ > 0, and
that any root of unity for which this does not hold true must be a root of p).
However, the heights of the 3 are strictly larger than 1. Hence by choosing a
C(G) > 1 which is smaller than these finitely many heights and smaller than
C, we obtain the desired theorem. O
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There is a somewhat remarkable consequence of Langevin’s theorem,
which suggests that it is easier to believe Lehmer’s conjecture than the con-
trary.

Corollary 1.13.1. If there were a sequence f,, of polynomials in Z[x] with
p(fn) > 1 but imp(f,) =1 (i.e. if the Lehmer conjecture where false), then
any point on the unit circle |z| = 1 would be an accumulation point of the
roots of the f,.

1.7 Transfinite diameters

In this section we shall prove the main lemma 1.3, which we needed for the
proof Langevin’s theorem. For this we shall need the theory of transfinite
diameters invented by Fekete and Tonelli [FeTol.

For a compact subset E of C we set

pn(E) = 1inf{|p|g : p € Clz],, p=2a"+... }.

Here we use

ple = sup |p(z)].
zelE
One can show that the number p, (FE) is even attained by a unitary polyno-
mial C,, € C[z],, and that, even more, C,, is unique if E has more than n
points [FeTo]. This C), is called the nth Chebyshev polynomial of E.
Note that, in the definition of p,(£), we can restrict to real polynomials
if F is stable under complex conjugation. Namely, in this case we have

(Iple + ple) = Iple

N =

1 _
\§(p+p)lE <

for any polynomial p, where p is obtained from p by taking the complex
conjugates of the coefficients of p. In particular, C), is real for such E.

By a similar argument we see that, in the case that F is the unit circle
S :|z| = 1, we can restrict to those unitary polynomials in C[z], which are
invariant under x +— (x for all nth roots of unity. Indeed,

pe) = 3 plco)

¢r=1

is unitary of degree n and satisfies |p|s < |p|s. On the other hand, the only
unitary polynomials in C[z],, which are invariant under all z — (z, are the
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"+ ¢, where c is a constant (exercise). Clearly " is thus the nth Chebyshev
polynomial of the unit circle, and consequently

ou(S) = [a"s = 1.
For an integer n > 0 let T,,(x) be the polynomial defined by
cos(nt) = 2" T, (cost).

Thus 7}, is a unitary polynomial of degree n. One has T} = z, T = 2% — 1,
T3 = x*—3z. The polynomial 2" T}, is the polynomial which is usually called
the nth Chebishev polynomial without making any reference to transfinite
diameters. In fact, 7}, is the nth Chebishev polynomial of the interval I =
[—1,+1] in the sense defined before.

Indeed, as is obvious from the definition, |T,(x)|; = 1/2""!. Furthermore
T,(x) attains n + 1 times the critical values £2'7" in the interval [—1,+1],
with alternating signs from left to right. Hence, if p were a unitary polynomial
of degree n with |p|; < 27", then f — p would be a polynomial different from
0, of degree < (n — 1) and whose values changes n 4+ 1 times the sign in I;
thus it would have n zeroes, a contradiction.

The transfinite diameter (or Chebichev constant) of a compact subset £
is defined as

p = lim p, (E)'/".

For the unit circle and closed intervals [a, b] on the real axis we have by

the preceding discussion

Theorem 1.14. One has p(S) = 1 and p([a,b]) = 52 for all real a <'b.

Proof. The second formula follows from p([—1,+1]) = % on using the general
formulas p(t+ E) = p(F) and p(AE) = Ap(E) (which, in turn are an obvious
consequence of | f(2)|err = [f(z +1)|p and |f(2)lxe = AAT f(Az)[p). O

Theorem 1.15. The limit p(E) exists and is finite.

Proof. Since E is compact it is contained in a disk |z| < R for some R. Hence
pu(E)Y™ < |2/ = R. In particular,

o = liminf p, (E)"/", 3 := limsup p,(E)"/"

are both finite. Let ¢ > 0, and let p a unitary polynomial, say of degree [,
such that |p|}E/l < o+ €. Then there exists a constant C' such that

|2"pF|lp < Cla+e)” (n=Fkl+r, 0<r<n)

for all n. Hence p,(E)'/" < CY"(a+¢) — a + ¢, and hence 3 = a. O
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We shall need
Lemma 1.4. Let A be an arc of length t < 27 on the unit circle. Then
p(A) <sin(t/4).
In fact one can show that one actually has equality [FeTo]

Proof. By applying a suitable rotation we may suppose that A is stable under
complex conjugation, contains 1 and has end points €/2 and e=*/2. Consider

the map

1 1
R:A—1I:=][cos(t/2),1], z~— §(z+ ;),

which is 2 to 1. If p is a unitary polynomial of degree n, then
-n n 1 1 -n
pls = lpo Rla = 27|20)"p (5 + )], = 2 "0 (4),
and hence . (t/2)
— oS
L) iy 2 )
i.e. sin?(t/4) > p(A)2. O
Theorem 1.16. (Kakeya) Let E be a compact subset such that |p|g < 1 for
some unitary polynomial p € Rlx]. Then there exists a unitary polynomial
q € Z[z] with |q|p < 1.
Proof. Let p be real, unitary, say of degree n with |p|p < 1. Clearly n > 1.
For positive integral m write m = gn + r with integral ¢ and 0 < r < n, and
set
pm(x) = 2"p(z)?.
Then

m r 1/n
[Pl Sba™ (b= max ||, a=[pl")

Fix a positive integer s. For each r we can find scalars |A;| < 1 such that
L, := Dr + )‘lpr—l +-+ )‘T—sps - Gr + H,

with a unitary G, € Z[zx| and an H of degree strictly smaller than s and

whose coefficients have absolute value less than 1. One has

a
Lg<bla"+---+a°)<bh :
|L g <bla"+---+a°) < -

Thus if s is sufficiently big, then |L,.|g < 1/3 for all ». But by construction the

sequence |H,|g is bounded. Hence for some | > ro we have |H,, — H,,|g <
1/3. But then

‘GTl _GT2|E = |LT1 _HTl _(LTQ_HT2>|E < |L71|E+|LT1|E+|HT1_HT2|E < L.
]
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1.8 Heights of non-reciprocal numbers

We call a polynomial reciprocal if its set of roots is invariant under z
1/z, and and we call an algebraic number a # 0 reciprocal if the set of all
conjugate numbers is invariant under z +— 1/z. Clearly, a polynomial is
reciprocal if and only if if and only if f* = af for some number a.

Theorem 1.17. (Smyth) Let f € Z[z]|, and assume that f is not reciprocal
and f(0) # 0. Then
u(f) >0 =13247...

where 0 is the real solution of 03 — 0 — 1 = 0.

Corollary 1.17.1. If f € Z[x]| is irreducible and of odd degree, then
u(f) = 0.

Proof. Assume that f = af* for same integer a. Then the set of roots of f is
invariant under the involution « — 1/a. Hence, if the degree of f were odd,
then at least one root satisfies & = 1/« i.e. & = £1. Hence any irreducible
polynomial of odd degree is either equal to a multiple of x+1 or x —1, or else
is not reciprocal. Hence Smyth theorem applies to all irreducible polynomials
of odd degree. O]

We may restate Smyth theorem and its corollary by saying: If « is an
algebraic number of degree n such that n is odd degree or such that « is not
reciprocal, then

H(a) > V0.
Corollary 1.17.2. (Siegel) 0 is the smallest Pisot number.

Proof. The set of roots of a minimal polynomial f of a Pisot number can only
be invariant under o — 1/« if the degree of f is two. Thus Smyth theorem
applies to f unless f is of degree 2. But in the latter case u(f) > %5 as

we already saw before (see section 1.2. ]
Corollary 1.17.3. (Cassels) Assume that f(r) = [[}_,(z — «;) € Zz]
satisfies |o;] < 1+ % (1<j<mn). Then f ==Lf".

Proof. We remark that the original theorem of Cassels was stated with

logh = 0.28 ... replaced by 0.1.
For the proof we simply note that by assumption

log 0

u(h) < (1+ T)" < st — g,

Thus Smyth theorem cannot apply to f. O
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1.9 Proof of Smyth’s theorem

We follow in this section essentially the original proof in [Smyl]. For a

complex number « set
zZ—«

Balz) = 1—az

If « is inside the unit disk then B, is holomorphic in an open neighborhood
of the unit disk and satisfies |B,(z)| = 1 for |z| = 1. Let now ay,...,q, be
complex numbers inside the unit disk, and let

B(z) = HBaj(z) =cotcztet .
j=1

We shall call B the Blaschke function associated to the family of the a;.
Lemma 1.5. One has 1 = |co|* + |c1|* + |co? + -+,

Proof. This follows from

1 21

. 1 2
1= — BeM[?dt = — k=0 qt.
2m J, | (e )| 2T ;Ckcl/o ¢

]

Assume now that f is a real polynomial without zeroes on the unit circle
and such that f(0) # 0. Let B and B be the Blaschke functions associated
to the zeroes of f and f* inside the unit circle, respectively (with repeated
multiple roots). Then B/f has no zeroes, and its poles are the roots of f
outside the unit circle and the 1/@, where a runs through the roots of f
inside the unit circle; and the same holds true for B/ f* since the set of roots
of f is invariant under z — Z. In fact, one easily checks

B_B
e

Let ¢, di and ay, denote the Taylor coefficients of B, B and f/ffat z=0,
respectively. Assume that the constant and leading term of f are equal to
+1. Then ¢ := |c| = |do| = 1/p(f) and a9 = £1. If, furthermore, f/f*
is not constant, then there exists a smallest & > 1 such that a; # 0, and
consequently,

Cr — aodk = akdo.
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From this (and |ag| = 1) we see that |dg| > |ardo|/2 = |ak|c/2 or |cx| >
lag|c/2. Hence from the preceding lemma

CLk|2
1> 2 | 2
= C +—4 c,

and thus
|a|?

u(f) = (1+ 1 )é-

Assume now that f is integral, irreducible and not reciprocal and f(0) #
0. Then it has no roots on the unit circle (since such a root would be a
root of f* too), and f/f* is not constant. For the proof of Smyth theorem
we may moreover assume that the leading term and constant term of f is 1
(since otherwise p(f) > 2). Thus f satisfies the hypothesis used in the last
paragraph, and accordingly the last estimate for u(f) holds true. However,
here f/f* has integral Taylor coefficients, in particular |ax| > 1. Hence

u(f) > \/2:1.118---.

This is already a weak version of Smyth’s theorem. His sharp bound is
obtained, essentially by the same method, However, by a more subtle in-
vestigation of the coefficients of the Blaschke function than in our lemma
above.

Lemma 1.6. Letn > 1.

1. For all real xy, ..., x, one has

(C(ﬂo)2 + (cor1 + Clxn)2 +- 4+ (corp+ -+ CnIO)2
<azp+ai+-4an. (11)

2. Set
Cn, Cn—1 Cpn—2 Co
Cn—1 Cn—2 Co 0
A= Ch-2 Co 0 0
Co

Then 1+ A and 1 — A are symmetric, positive definite matrices.
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3. In particular, one has

1> &+ e, (1.2)
2 2

<cpp<1—ct— ——, 1.3
]_—I—CO) Con = “ 1—00 ( )

and the same inequalities with ci replaced by dy.

Proof. In fact, the above inequalities hold true for the Taylor coefficients at
0 of any function which is holomorphic in an open neighborhood of the unit
disk |z] < 1, satisfies |f(2)] < 1 for |z| = 1 and has real Taylor coefficients
¢;. Indeed, setting p(z) = o+ x12 + - - - + x,2", we have

Z(Col’j + -+ le’o) = %

Jj=0

Awuwm@Wﬁ (2 = o)

1 2w n
< — lp(2)[2dt =) a7
27 Jo j;o /

The second assertion is obtained using the Cauchy-Schwartz inequality
and the first one:
+at Az < |z||Az| < |z)?.

Let ¢ = 41. Since 1 + A > 0 we obtain in particular

det (1 T e £ £cy, l+ecg 0 | >0,

ECy 0 1

1+ ecy, ecy, €Cy
) , det
ECy 1

which implies the last two inequalities. O

We saw above that max(|c,|, |d,|) > |c|/2. Together with the third in-
equality this implies already 1 — ¢ > ¢/2, u(f)? — u(f)/2 —1 > 0, and
hence

1++1
2%7:1.280....

n(f)

We can assume without loss of generality that u(f) < %. We set

i —=
f*
where k < [ and ay, a; # 0. By multiplying B by +f(0) and B by £1 we can
then assume that B(0), B(0) > 0 and that

1(0) 1+ apz® +a;2' + O,

~

B:(1+akzk+alzl+~~)B.
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In particular, we have
ci=co=do=p(f)",
and furthermore
Cj = dj (O < j < k’)
Cr = dk + CoQp
Chy1 = dpy1 + diag
Cl—1 = di—1 + di—p—1ax,
C = dl + dl_kak + coq

As a first consequence we note

lar] =1
lay| =1
k| + |di| = ¢

N N /S /S A/
—_ =
O ~J O Ut W~
N e e N N

Indeed, if |ax| > 2, then, by (1.5), we would have max(|cg|, |dx|) > c.

Hence, by the lemma 1 — ¢® > ¢, which contradicts ¢ > %.

Similarly, if |a;| > 2, then, by (1.8), max(|c|, |di], |di—x|) > 2¢, and hence,

by the lemma, 1 — ¢? > %c. Again this contradicts ¢ > %.

Finally, by (1.5) |ck| + |di| > |cx — di| > c. If the inequality were strict,
then ¢ = |cx| — |dg| or ¢ = |dg| — |cx|, in any case, max(|ck|, |dx|) > ¢, which

is impossible as we have already seen.

Case 2k < [: We can assume that 2k < [. Otherwise we interchange f and

f*. Namely, using

(1+ak$k+a2k:)§2k+---)_1 =1 —akxk+ (a% _a2k)$2k‘|‘"' ,

we see that then a? — ag, = 0 (since otherwise this would be 2 by (1.9),

(1.10)).
We now apply (1.3) to obtain
c i
(1 — 2 k < <1— 2 k
R e s
dz dz
—(1—d*— —t )< —dp, <1 - — —F).
( =g S Td S T+ dy)
Adding both inequalities gives (on using also (1.5))
dz c
—2(1-¢ L b <oy —doy=d
( C)+1_d0+1+60_62k 2k = ApAj
2 2
S 2(1 _ 02) dk‘ Ck

S 14+dy 1—cy

(1.12)

(1.13)
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Using (1.11) this gives
|di| < max(H (|dx]), H(|ex])),

where we use

x? (c—x)?
H(z) =201~ ) — ( ).
(@) =20 =) = ({7t 7,
But 1 —c? > |dy| > c—|ex| > c+c*—1 by (1.3),(1.7) and (1.2), respectively,
and the same holds true with ¢; and dj interchanged. Hence if we set I =
[ +c—1,1—¢?], then we find
& +c—1<maxH(z).
xel
But H(z) takes its maximum in x = 1%3 Since ¢ > 3 we have % >1—-¢7
(since the latter is equivalent to ¢ ] — 1, 1[). Hence H(z) is increasing on I,
and thus
(1=c*)? (A +c—1)2

2 2 2
+ 1< H(1 =2(1
c c < H( ) ( ) 1+ e 11— ,

ie. —c3> —c?+ 1> 0. This gives finally u(f)® — u(f) — 1 > 0, which means
that u(f) is to the right of the real root 6 of 2* — 2z —1 = 0.

Case | < 2k: We may assume a; = £1 (otherwise interchange f and f*).
By (1.1) we have, for all 5,7 € R,

A+ (g +ve)* + (cp +vean—s — )* + (e + v — g + Bc)?,
02 —+ (_dl—k — ’)/0)2 -+ (—dk — 7d2k—l — C>2 —+ (—dl — ’}/dk — dl—k + ﬂc)Q
<2492+ 3

2
We add these two inequalities, use ‘IQQLI’Q > (‘%”) and ¢; =dj for 1 <j <k,
and set xr = ¢;_;, = d;_j, to obtain

—d —d —d
Ck2 k—C)2—|—<Cl l_'_,ka k—$+50)2§2+’}/2+/@2

2 2
c +(:r+wc) —l—( 5 5

By (1.5) and (1.8), using a; = +1, this can be rewritten as

3 T+ ca c
1€ @ ae) (g by et Be) <2497+ 5

Replacing x by —a;x, 3 by ;3 and v by —a;y we get

c+x—ryc

. +8e)’ <2442+ B2

d
102+ (z+7¢)* + (
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If we view the difference of the right hand side and the left hand side as
quadratic polynomial in (3, then the inequality states that its discriminant is
<0, i.e. (using 1 —c* > 0) that

2

o 2
lerz=ne o, 2

S 5 2
2C (x+ye)* + =)
Again, viewing the difference of both sides as polynomial in v, we obtain
that its discriminant is < 0. Thus (using that the coefficient of 42 is positive
since ¢ < 4/(1++/17), as follows from 1 — ¢* > ¢/2) we have

c(ctx) \2
5 —2)? (e gz
22 4 224 (c x)Q + 22(1 2 <9
4 A=) 41— - o)

Now, again, since ¢ < 4/(1 + v/17), the left hand side minus 2 viewed as
polynomial in x has positive leading term. Since it is < 0 for at least one
x it has a real root, hence non negative discriminant. By a straight forward
calculation this yields 40c¢* — 93¢ + 40 > 0, or, in terms of u(f), finally

() = Zp(f)+1> 0.

40
This implies
u(f) >1.3248--- > 0 = 1.3247 . . .,

and proves thus Smyth’s theorem.

1.10 Remarks

Parts of the proof of Smyth theorem can already be found in [Sicg], where it
was proved that the real root of 2% — 2 —1 = 0 is the smallest Pisot number.
The sharpest result in the direction of the general Lehmer conjecture is due to
Dobrowolski, Cantor and Straus and Louboutin [Dobr], [Loub] which states
that there exists a constant v > 0 such that

log log n) ’

H(a)" = 1+7( o 1

for all @ # 0 of degree n which are not equal to a root of unity. The pre-
sentation chosen in this chapter, which led from the easy proof of Schinzel’s
and Zhang’s theorem to Langevin’s theorem, does not correspond to the cor-
rect chronological order of their discovery. Indeed, Langevin’s theorem was
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published in 1985, and the former proofs were found almost ten years later.
However, they are all three based on what is sometimes called the resul-
tant method, which is already more or less explicitly used by Schinzel [Schi].
Zhang’s theorem (along the lines of Zagier’s proof) has been generalized
by Beukers, Schieckewei, Schmidt, Wirsing, Zagier for obtaining absolutely
lower bounds for heights along hypersurfaces; see [BeZa] and the references
therein, and see the next section for a theorem of this kind. In particular,
as corollary of the main result in [BeZa] one obtains a part of Smyth theo-
rem: If the trace of « is integral and different from 1/« (and « is thus not

self-reciprocal), then H(a)™ > 4/ %5, where n is the degree of a. Another
possible generalization of Zhang’s theorem was investigated in [Smy?2]. Here
Zhang’s theorem is interpreted as giving an absolute lower bound for the
Mahler measure of polynomials in X (X — 1), and the paper generalizes this
result to polynomials of the form p(T'(z)), where T(X) € Z[X] is of degree
n > 2, divisible by X, but # +X". This point of view is also taken up in
[Doch]
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Part 2

Heights on Elliptic Curves

So far we have discussed heights of algebraic numbers. One may view this
theory as theory of heights on the curve P'. Indeed, for a point P = [z : y] €
P!(K), where K is a number field, define

H(P)= ] max(lzl,, lyl,)"".

’UEPK

By the product formula this does not depend on the choice of projective
coordinates of P, and if we identify o« € K with the point P := [o : 1] €
P(K), then H(P) = H(c). In this section we now discuss heights on curves
of genus 1, which may be viewed as a natural step after the genus 0 case
discussed before.

However, before going into this theory, we shall reinterprete Zhang’s the-
orem. This theorem is in a sense on the boundary between the theory of
heights of algebraic numbers and heights on general curves. Next, we have
to discuss shortly heights on projective space, since some of the general results
about such heights are needed for the theory of heights on elliptic curves.

2.1 Heights on affine plane curves

In this section we generalize the proof of Zhang’s theorem as given in [Zagi].
For this we restate Zhang’s theorem as a theorem about heights on affine,
possibly reducible, plane algebraic curves defined over Q. By such a curve
we understand the set C' of solutions (x,y) of an equation F(z,y) = 0, where
F € Q|x,y], and F is not constant. We use C* for the curve defined by

F*(z,y) == a™y"F(1/2,1/y),

where m and n are the degrees of F(x,y) in x and y respectively.

31
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Zhang’s theorem may be restated by saying that H(«)H () > C for all
(a, B) on the curve x +y = 1. This suggests of thinking of H(«)H () as
height of the point P = («,3), and then Zhang’s theorem says that the
heights of the points on the line z 4+ y = 1 are bounded to below. Or it may
also be thought of saying that the heights of two algebraic numbers satisfying
an algebraic (here linear) relation can not be both arbitrary small. It is not
hard to generalize Zhang’s theorem as follows:

Theorem 2.1. Let C be an affine plane curve defined over Q such that C'
intersects C* in only finitely many points. Then there is a constant A > 1
such that

H(a)H() = A

for all pairs of algebraic numbers (o, 3) on C such that o, 5 # 0 and («, 3)
s not an intersection point of C' with C*.

Proof. Let G(z,y) be a polynomial which vanishes at the intersection points
of C' with C*. For real s > 0 set

(2, w) = |2]2 w2 |G (2, w)G (12,1 /w)].

We show that for every sufficiently small s > 0 there is a constant A = A, > 1
(depending on s) such that

maX(L |ZD ma’X(17 |w|) 2 ASVS(ZJ U))

for all (z,w) on the truncated curve D := C U C*, which is defined by
FF* =0, if, say C' is defined by F' = 0.

Since both sides of the desired inequality have the same invariance under
z +— 1/z and under w +— 1/w, it suffices to prove the estimate for all points
on the curve Dy := DN (D x D), where D is the disk |z| < 1. Hence we have
to show that for all [ > 0

|2l Jwl'|G(z, w)G* (2, w)| < 1

on Dy.

For proving this note that the number of points (z, w) of Dy with |zw| = 1
is finite, and that, for any such point, one has G(z,w) = 0. Indeed, if (z, w) is
such a point, then (1/z,1/w) = (Z,w), and hence, using that F' and F* have
real coefficients, F'(z,w) = 0 implies F*(z,w) = 0 and vice versa, i.e. (z,w)
is an intersection point of C' and C*. Hence, there is an open neighborhood
U of all these points such that the last inequality holds true on U. Since
Dy \ U is compact there exists a constant R < 1 such that [zw| < R on
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Dy \ U. Moreover, |GG*| < a on Dy \ U with a suitable constant a. Thus, if
| satisfies R'a < 1, where I’ = (I 4+ max(m,n))/2 with m and n denoting the
degree of G in x and y respectively, then the desired inequality holds true on
all of Dy.

To finish the proof we proceed exactly as in the proof of Zhang’s theorem.
Let (o, 3) is a pair of algebraic numbers on C, say of degree d and e and
with normalized minimal polynomials f = az? + --- and g = ba® + -- -,
respectively. Then, for all sufficiently small s, we have

H(a)' H(3)* = [ab| J] max(1, |o’[) max(1,[5])
a/7ﬁl
> Adtelalamm |2 | £(0)[2 7 g (0)] 2

. H |am+m*bn+n*(GG*)(O/,5,)|S,
a/7ﬁ/

where m* and n* are the degrees of G* in = and y, respectively, and where
o' and (' are running through the conjugates of o and 3. If

smax(m, m*,n,n*) < 1/2

and if G has integral coefficients, then the right hand side is A%*¢ times
positive powers of nonnegative integers. Hence it is bounded to below by
> A™t unless af(GG*)(«r, B) = 0.

We finally assume that we have chosen G such that the curves D : GG* =
0 and C' intersect in only finitely many points. If («, 3) is on C, but not on
C*, then « and f are not both roots of unity, and hence H(a)H(5) > 1
by Kronecker’s theorem. Thus, replacing A; by the minimum of A, and
the H(«)H (), where (a, ) runs through the finitely many points of C' and
D : GG* =0, but not on C*, finally gives the desired estimate.

It remains to ensure the existence of a G with integral coefficients, van-
ishing on C' N C*, but such that D : GG* = 0 and C have only finitely
many points in common. Indeed, such polynomials exist. We can e.g. choose
through each intersection P point of C'and C* a line Lp(x,y) = 0, such that
neither this line, nor one of its finitely many conjugate lines Lp;(x,y) = 0
lie on C' or C*. (A conjugate line is one whose defining equation is obtained
by applying to the coefficients of Lp a Galois substitution of Q.) Then
G :=[]p; Lp; has the desired properties. O

As already mentioned before, we had C': x +y = 1 in Zhang’s theorem.
Thus C* : x + y = xy. The intersection points of C' and C* are p = %?3
and its complex conjugate. If we take for the G used in the preceding proof

G = (pr — py)(pr — py) = =° — Yy + v/,
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then G* = 22 — 2y + y?, and

1 1 |22—Z—{—1| 2s
(11— 2) = et - (B2
|21 — 2|

This is the function we actually used in our original proof with s =1/ 4:/5.

2.2 Heights on projective space

For a point P in P", say with projective coordinates [z : -+ : z,] in a
number field K, we define its height Hy (P) relative to K and its absolute
height H(P) by

Hg(P)= ]] max |zjle,  H(P)= Hc (P,
vePr —
By the product formula [], |t|, = 1 (¢ € K) this is well defined (see the proof
of 1.10), and by the compatibility relations H(P) does not depend on the
choice of the field K.

If P € P*(Q), then we may choose the projective coordinates x; in Z and
such that ged(zo,...,x,) = 1. But then, for each non-archimedian v, we
have |z;|, < 1 for all j and |z;|, = 1 for at least one j, and hence H(P) is
given by the more intuitive formula

H(P) = max ;|
J

with the usual archimedean absolute values |z;|.
If P=[zg:--:x,] € P"(Q) and, say, z; # 0, then the minimal field of
definition Q(P) if P is defined as

QP) =Q(2,... .

b
ZLj Lj

This does not depend on the choice of z;.
We shall need two basic properties of the absolute height.

Theorem 2.2. For each constant C' and for each integer d the set
{PeP"|H(P)<C, [Q(P):Q] <d}

s finite.
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Proof. Indeed, one has for any P € P", say P = [z : - -+ : x,,] with at least
one r; = 1 and with K = Q(P),

Hy(P) = H mjax|xj|v > mjale[max(l, lzj|y) = m]aXHK($j).

’UEPK

If [Q(P) : Q] < d then we also have [Q(z;) : Q] < d for all 5. Thus the
theorem follows from the special case n = 1, which we proved in section
1.4. O]

By a morphism
F:P"—P™

of degree d we understand a map of the form

F(P)=[fo(xo,- - xn), -, fulxo, ..., 20)], (P=[xg: - :x,)]),
where the f; are homogeneous polynomials of degree d and with coefficients in
Q. In particular, for such a set of polynomials f;, one has f;(xo,...,z,) =0
forall 0 < j<mifand onlyif zg =27y =--- =2z, =0.

Theorem 2.3. Let F' : P — P™ be a morphism of degree d. Then there
exist constants Cy,Cy > 0 such that

C1H(P)' < H(F(P)) < CoH(P)*
for all P € P™.

Proof. Let P = [zg: -+ : x,] € P"(K). For a place v € Px we set e(v) = 1
if v is archimedean, and e(v) = 0 otherwise. Using this symbol we have, for
all v and all points a; € K,
lay + -+ aply < 77 max |a;l,.
1<j<r
Moreover, we use H,(P) = max; |z;,, thus Hx =[], H,.

Accordingly we have (using f; for the (”:l“d) coefficients of f;)

H,(F(P)) = max|fj([wo : -+ 2]l

n+ d\*"

This yields the second inequality.
For the first one we need the Hilbert Nullstellensatz (see any text book an
algebraic geometry). In our case it asserts that, for any polynomial f which
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vanishes at the common zeroes of all the f;, some positive integral power f”
lies in the ideal I generated by the f; in the ring Q[Xo, ..., X,]. Now, the is
the only common zero of the f; is the point 0, and hence, for a suitable integer
r the polynomials X, ..., X’ lie in /. In other words X" = Zj Py ; f; with
suitable P ; € @[XO, ..., X,]. These identities remain valid if we replace the
Py ; by their r — dth homogeneous component, and hence we may assume
that the P ; are homogeneous of degree r — d. Enlarging K if necessary, we
may furthermore assume that the P ; have coefficients in K. Then, similar
to the reasoning above, we have

H,(P)" = max| Z(Pk,jfj)(:vo, )

< (m+ 1)5(1})(11]1;})( | Pj(zo, ...\ Tn) o) (mjax | fi(@o, ..o, zn)lo)

n+r—
r —

e(v)
< (m+ 10 ( d) C H,(PY~—H,(F(P)),

where C' is the maximum of the v-adic valuations of the coefficients of all the
P ;. This implies the first estimate. O

2.3 Plane curves as diophantine equations

Everybody knows how to compute L(Q) for a line L/Q in the projective
plane P2, Tt is also not difficult to compute C(Q) for a projective plane curve
C'/Q of degree 2. Let us consider, to have a concrete example, the circle
C' which is given in affine coordinates by C' : 22 + y?> = 1. We fix a point
O € C(Q). Then, for P € C(Q), the line Lp through O and P is defined
over Q. If P = (z1,11), then Lp is given by the equation

U1
= —1).
y 561_1(3j )

Conversely, if L is a line through O, then L intersects C' in exactly two points,
in O and in a second point P = (x1,y;). (If P = O then Lp is the tangent
to C' at O and vice versa.) If L is defined over Q, then so is P. Indeed, if L
is given by y = A(z — 1), then z is a solution of the quadratic equation over
Q obtained by replacing y in 2? +y?> = 1 by Az + p. Since z = 1 is also a
solution, x; is necessarily rational, and so is y; = Ax; + pu. Working out the
details one finds 23 + \(z; — 1)? =1, i.e.

A2 —1 —2A
T W=y
A2 +1 A2 +1

Tr1 =
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In general, if C'/Q is an irreducible smooth projective plane curve of
degree 2, and O = (z9,y0) € C(Q), then one can easily verify that the map

Y1t — Yo

C— ]Pla P = (xhyl) =
Tr1 — Xy

= slope of the line through O and P

is an isomorphism defined over Q and mapping C(Q) onto P'(Q). The above
method of determining C'(Q) is effective, apart from the fact that we have
to find at least one O € C(Q) to start with.

We now turn to cubic curves defined over Q. Here the situation has
still some similarities with the quadratic case, though there are also much
more complications. Again we start with the idea of reducing to algebraic
equations in one variable by intersecting with lines. However, if we intersect a
cubic curve C'/Q with a line, then there will be in general three intersection
points. But still, if the line is defined over Q and two of the intersection
points are in C'(Q), then the third one belongs to C(Q) too. However, one
can make an even stronger statement.

To explain this we restrict for the following to elliptic curves in Weierstrass
form defined over a number field K. By such a curve we understand a cubic
curve E which, in affine coordinates, is given by an equation of the form

E:y?> =2+ Az + B,

where A, B are elements of K, and where we assume that the the polynomial
in x on the right has no multiple roots, i.e. that its discriminant

Ap = —4A% —27B* # 0.

Such a curve has exactly one point O on the line at infinity, which in homo-
geneous coordinates is given by

O=1[0:1:0].

The condition Ag # 0 ensures that F is a non-singular curve. The restriction
to such curves is not a serious one, since any non-singular plane cubic curve
is isomorphic to a curve in Weierstrass form (see the next section for details).

If for P = (z,y) € E we set —P := (x,—y), and if we define a binary
operation + on E by letting P, + P, the unique point P such that P, P,
and — P (counting multiplicities) are the intersection points of F with a line,
then E becomes a group (for details and a proof of this see the next section).
Clearly, the point 0 at infinity is the neutral element of E (it is an inflection
point), and if a is a root of X + AX + B, then («,0) is a point of order 2.
Finally, if E is defined over K, then E(K) is a subgroup of E. This follows
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easily by looking at the equations expressing the affine coordinates of P, + P,
in terms of those of Py, P, (again, see the next section for details).

Assume now, to come back to diophantine equations over Q and to show
the idea for the general theory developed in a moment, that E is of the
special form

E:y*=(z—a)(z—0b)(z—c)

with pairwise different integers a,b,c. Clearly the question is when, for a
rational number x, the product (x — a)(x — b)(x — ¢) is a square in Q. To
analyze this we introduce the map

¢: B(Q) — G = (Q'/Q™)?,
(x—a(@*2 b)Q*Q) if v #a,b, P#0
1 it P=0
(m—b )z —)Q*%, (z —b)Q*) ifz=a ’
((z —a)Q*, (z —a)(x — )Q*?) ifax=1b

where (z,y) are the affine coordinates of P if P # 0.

P—

Lemma 2.1. The map ¢ is a group homomorphism with kernel 2E(Q).

Proof. For showing that ¢ is a group homomorphism it clearly suffices to
show that ¢(P)p(Pe)p(Ps) = 1if Py + Py + P; = 0. This is trivial if one of
he P; is 0. Otherwise the P; lie on a line y = Ax + g with A\, p €€ Q, A # 0.
Hence, if we set P; = (z,y;), then the z; are the solutions of

(z —a)(z = b)(z — ) = (A\z +p)* =0,
Hence we have
(r —a)(z = b)(z — ) = A+ p)* = (z — 21)(x — x3) (x — x3).

In particular, considering this equation for x = a, x = b and x = ¢, respec-
tively, we observe that

(a—z1)(a—x9)(a—x3), (b—21)(b—22)(b—23), (c—11)(c — 22) (c — 3) € Q%

From this one easily obtains ¢(P;)¢(P)p(Ps) = 1.
Clearly 2E(Q) is mapped to 1 since Q*/Q** has exponent 2. Conversely,
assume that ¢(P) = 1. ...to be completed later. O

For v € Py, let G, denote the subgroup (of order 2) in Q*/Q* generated
by pQ*? if v is non-archimedean belonging to the prime number p, and by
(=1)Q*%, if v is archimedean. Clearly, Q*/Q** =3, G..
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Lemma 2.2. The image of ¢ is contained in

D &

p|AE or p=oco

where Ag = (a — b)*(a — ¢)?(b — ¢)? is the discriminant of E. In particular,
it is finite.

Proof. Let P € E(Q), P # 0, say P = (x,y). Let p be a prime number, and
let ¢(P) = (uQ**,vQ**). We have to show that ord,(u) and ord,(v) are both
even.

For this let p™ be the exact power of p in the prime decomposition of x.

If n <0, then x # 0,a,b and we can take u = x —a and v = z — b. Since
a, b, c are integral p™ is also the exact power of pin x —a, x — b and x — c.
We have accordingly ord,(y*) = 3n. On the other hand ord,(y*) is even. It
follows that n = ord,(u) = ord,(v) is even.

If n > 0, then the order at p of each of the three numbers z — a, x — b
and x — ¢ is nonnegative. At most one of them has positive order since the
difference of two of any of these divides A. Again, since their product is
a square in Q, this implies that the orders at p of these numbers are even.
Hence if z # a,b then u and v have even order.

The case n > 0 and = a or x = b is left to the reader. O

Let R be a set of representatives for F(Q)/2E(Q). By the preceding
lemma R is a finite set. The set R (and possibly a finite number of additional
points in F(Q) to be explained in a moment) play the role of the point O in
the case of quadrics considered above. Namely, let Py € F(Q). Then we can
find an @ € R such that Py = Qo + 2P, for some P, € F(Q). Again, we find
a Q1 € R such that P, = Q1 + 2P, with a suitable P, € F(Q), and so forth.
Suppose that in each step the point P; is of less complexity, say needs less
digits to be described, than its predecessor P;_;. Then we may hope that
our descent procedure will end in the sense that P, for some n is in a finite
set S of very simple points. Hence F, is a linear combination of the points in
RU S, which solves the problem of determining F(Q). That the group E(Q)
is finitely generated is indeed the case for any elliptic curve over Q; this is
Mordell’s theorem which we shall prove in the next sections following exactly
the ideas sketched in this paragraph. The complexity of points in E(Q) will
of course be measured using a height function.

For curves of genus strictly greater than 1 the situation is completely dif-
ferent from the genus 0 and 1 case. Here one has Mordell’s conjecture, which
was proved by Faltings (for another proof, based on Faltings’, but shorter,
more self contained and using the theory of heights instead of arithmetic
intersection theory, see [Bombl).
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Theorem 2.4. (Mordell-Faltings) For a projective curve C/Q with genus
> 2 the set C(Q) of its rational points is finite.

Thus, for curves of genus 2 the problem is too find good a priori upper
bounds for the height (to be properly defined in some sense) of its rational
points.

2.4 Basic facts about elliptic curves

This section is still incomplete. To complete the logical thread of this second
part the following topics would have to be reviewed: group law — E(K) —
K(P)— Weierstrass form — action of Galois [m] is surjective — affine and
projective form — K(E) = maps onto P! — deg(f) — E — E as Jacobian
of itself

2.5 Heights on elliptic curves

We fix for this section an elliptic curve E defined over a number field K,
which we suppose always to be given in Weierstrass form

E:y* =2+ Az + B, (A, B € K)

As height Hy(P) of a point P € F, say with homogeneous coordinates [z :
y : z] in a number field L, we may consider the height of P considered as
point of the projective plane P?, i.e.

Ho(P) = [] max(lzlo, lylo, |2],)"/ 9.

’UEPL

Another possibility would be to view x as a function from E onto P!, and
to take H,(P) := H(x(P)) as the height of P, where H(z(P)) is the height
of z(P) as point of P!. Or, more generally, we could take any nonconstant
function f € K(E), consider it as function onto P' and take H;(P) :=
H(f(P) as height function.

However, as it turns out, all these possibilities are essentially equivalent.
Also, notations become more natural if one uses additive notation, i.e. if one
uses the logarithmic heights

hf(P) = degf

The reason for normalizing be the factor 1/deg f will become clear in a
moment.

log H(f(P)).
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Theorem 2.5. Let f,g € K(E) be nonconstant functions on E. Then, for
every € > 0, there are constants Cp,Cy > 0 such that

H,(P)/ des f
s(P) < CyH;(P)*e

Cle(P)_ S Hg(P)l/degg —

for all P. Or, using logarithmic heights, for every ¢ > 0, there is a constant
C such that
|hf(P) = hg(P)| < C 4 ehy(P)

forall P € E.

Proof. 1t is easy to check that the last inequality defines an equivalence
relation on the set of all functions hy with f running through the non constant
elements of K(F). Hence it suffice to prove the last inequality for some
specific choice of g and arbitrary f. We choose g = . Moreover, we assume
also that f is even. For the general case we refer the reader to [Weil] (or
[Lanl], Ch. 4, Cor. 3.5). Here we call f even if f(—P) = f(P). For even f
the desired inequality is in fact true even for e = 0.

Now f is a rational function in x and y, say f = p(z,vy)/q(x,y), with
two polynomials p,q¢ € Q[X,Y]. Since 32 is a polynomial in 2 we can even
write f = (p1(x) + yp2(2)) /(g1 (x) + ygo(z)) with polynomials p;, ¢; € Q[X].
Also, we may assume that the numerator and denominator are relatively
prime. Then they are unique up to multiplication by constants. But then
we observe, on using that y is an odd function, i.e. y(—P) = —y(P), that f
can only be even if py = ¢ = 0.

Hence f = r o x, where r is the rational function r : P* — P! given by
r(t) = p1(t)/q2(t). Since any such rational function is a morphism (in the
sense explained in section 2.2), the theorem for f and g = = now follows from
Theorem 2.3: there exists constants C,Cy > 0 such that

CiH (x(P))*" < H((r o x)(P))™®" < CoH (x(P))™*".
Using deg f = 2degr we obtain the desired inequality. ]

The heights hy possess a striking property, which we shall use to derive
a canonical height from them by a procedure analogous to the one which led
us to the definition of the Mahler measure.

Theorem 2.6. Let [ € K(FE). Then there is a constant C' such that
(P + Q)+ hy(P = Q) — 20y (P) + 2h4(Q))| < C
for all P,Q € E.
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Proof. 1t suffices to prove this identity for some particular function f. The
general result follows then from the preceding theorem. For f we choose the
coordinate function z.

For the proof we look at the following diagram:

ExE - ExE

xX:pJ{ CEX(EJ/

P! x P! —— P! x P!

pr 2, p

Here we use

¢: (PvQ) = (P+Q7P_Q)>
v (gl [2Y]) = lyy' oy’ + 2'y, 22",
¢:la:b:c— [b*—4dac: 2b(Aa + ¢) + 4Ba* : (c — Aa)® — 4Bab).

(Here A, B are the coefficients of the Weierstrass equation defining E.) It is
not completely obvious, though straightforward, to check that the diagram
is commutative and that ¢ is a morphism (see section 2.2).

Moreover, we leave it as an exercise to verify that there exist constants

C1,Cy > 0 such that
H(A)H(B)
< ———— = <
@S Haam) =

for all P,Q € PL.

We use h(A) :=log H(A) for A € P" and H denoting the height on P".
Finally, for any two real valued functions «a, 5 on E x F we write a ~ [ if
|a3] is bounded on E x E. We then have

ho(P + Q) + he(P — Q) = h(z(P + Q)) + h(z(P — Q))
~ h(z(P +Q),z(P - Q)))
= h(¢oi(z(P),z(Q)))
~ 2h(u(z(P), y(Q))) = 2h(x(P)) + 2h(x(Q)).
Here, for the last but not least identity we used Theorem 2.3 and that the
degree of ¢ is 2. This proves the desired estimates. O]
We now define the canonical height (or Néron-Tate) height of a point P
on E by

1
h(P) = lim Ehf@’*fp).
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If we right n for 2% and if we use that E[n] consists of exactly n? points, then
h(P) can be viewed more suggestively as the limit of the sequence

1

ﬁhf( > Q).
QEE
nQ=P

This is exactly the kind of formula (written additively) which we used to
define the Mahler measure. In fact, it could be shown that, instead of powers
of 2, we can take powers of any arbitrary nonnegative integer for obtaining
the same limit.

Theorem 2.7. The limit defining h(P) converges uniformly in P. It does
not depend on the choice of f. There is a constant C' such that

[(P) = hs(P)| < C
forall P € E.
Proof. By the last theorem, setting () = P, we obtain that
|hy(2P) — 4hg(P)| < C

for all P with a constant independent of P. We use this to show that
47kp(2kP) is a Cauchy sequence uniformly in P. Indeed, if m > n then,
using the above estimate, we obtain

—_

[47"h (27 P) — 4" hp(2"P)| = Y |4 FFDR(25P) — 4K B (28 P))

n

3

i

m—1
C 4C
= Z Ak+1 < 3. 4n+1’
k=n

which tends to zero, independent of P, for m,n — oo.
The last assertion of the theorem follows similarly by writing

h(P) = hp(P) =Y 4~ "H0h (251 Py — 47Fp (28 P).
k=0

If g is another nonconstant function on E, then, for each € > 0, we have
|hf(P)—hy(P)| < ehs(P)+ C with a constant independent of P. Replacing
here P by 2*P, dividing by 4* and letting &k tend to infinity shows that the
difference of the limits of 47%h,(2%P) and 47%h;(2"P) is bounded by & times
the second limit. Since this is true for all £ > 0 the two limits must be
equal. O
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Immediately from the definition we obtain that h is an even function and
that h(0) = 0, as follows easily on taking = for f in the definition of h.
Similarly, one obtains

Theorem 2.8. For each 0 € Gal(Q/K) and each P € E one has h(P?) =
h(P).

Proof. This follows on writing h(P) as limit of log H(x(nP))'/" (n = 2%), and
using H(z(P?)) = H(z(P)?) = H(xz(P)), where the last identity is obvious
from the very definition of the height H on P2. O

Theorem 2.9. For each constant C' and each integer d, the set
{PeE|n(P)<C, [QP):Q]<d}
s finite.

Proof. Since h,(P) < h(P) + C for some constant C' it suffices to prove the
theorem with h replaced by h,. But this is an immediate consequence of the
fact that the map P +— x(P) is two-to-one, and the fact that there is only
a finite number of algebraic numbers with height and degree below a fixed
bound (see section 1.4). O

An important property is that the height is a quadratic form as is already
suggested by the quasi-parallelogram law for the h as stated in Theorem 2.6

Theorem 2.10. The map
(,):ExE—-R, (PQ):=h(P+Q)—h(P)—h(Q)

is Z-bilinear. In particular, one has h(nP) = n*h(P) for all integers n and

all P.

Proof. By writing in Theorem 2.6 nP and n@Q for P and Q, dividing by n?
and letting n tend to infinity we obtain the so-called parallelogram law

h(P+ Q)+ h(P — Q) = 2h(P) + 2h(Q).

From this the bilinearity follows by a simple algebraic manipulation. Since
the pairing ( , ) is symmetric it suffices to prove

(P+@Q R)=(P.R)+(Q R).
It is straightforward to check that this is equivalent to

h(P+Q+R)—hP+Q)—h(P+R+)—h(Q+R)+h(P)+h(Q)+h(R)=0.
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But this follows indeed from the parallelogram law (and using the evenness
of h) as follows. Applying four times the parallelogram law gives

h(P+Q+R)+h(P+Q—R)—2h(P+Q)—2h(R) 0
h(P—-Q+ R)+h(P+Q—R)—2h(Q — R) —2h(P) =0
hMP—-Q+R)+h(P+Q+R)—2h(P+ R)—-2h(Q)=0
2h(Q + R) +2h(Q — R) — 2h(Q) — 2h(R) 0,

and taking the alternate sum of these four equations is exactly the desired
identity..

The second assertion follows from 2h(P) = h(P) + h(—P) — h(P — P) =
—(P,—P) = (P, P). O

As direct generalization of Kronecker’s theorem one has
Theorem 2.11. One has h(P) = 0 if and only if P is a torsion point.

Proof. By the preceding theorem we clearly have (P, P) = 0 if nP = 0 for
some integer n > 1. Conversely, if h(P) = 0, then h(nP) = 0 for all P. If
L/K is a number field such that P € F(L), then nP € E(L) for all n. But
the set of all Q@ € FE(L) with h(Q) = 0 is finite as we saw above. Hence P
must have finite order. O

Since the set of points on E with height below a given bound affine
coordinates in a given number field L is finite, we see that in particular
E(K)tor is finite. However, one can say much more. The theorem of Mazur []
says that, for an E defined over Q the subgroup F(Q);,, is always isomorphic
to one of a given list of fifteen abelian groups. It is conjectured that this is
true for all number fields K in the following sense: For each number field K
there is a constant N such that F(K )i, for any elliptic curve E defined over
K, has not more than N points. By a theorem of Manin [Mani] one knows
at least that for any K and any prime number p there exists a constant N
such that the p-part of E(K )i, for any E/K, is bounded to above by N.

From the last theorem we also obtain

Theorem 2.12. The height pairing { , ) on E factors to a non-degenerate
pairing E/Eyyr X E/Ey — R.

Proof. Clearly (P,Q) = 0 for all @ if nP = 0 for some n > 1. Conversely
(P, Q) = 0for all @ implies h(P) = 0, and hence that P is a torsion point. [

We conclude this section with another result showing that the canonical
height deserves its name.
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Theorem 2.13. Let h' be a real valued function on E which satisfies the two
following properties:

1. There exists an integern > 2 such that b'(nP) = n?h'(P) for all P € E.

2. There exists a function f € E(K) and a constant C' such that |h(P) —
hy(P)| < C forall P € E.

Then h' = h.

Proof. From the second assumption we see that |h/(P) — h(P)| < C’ for all
P with a suitable constant C’ (not depending on P). But then from the first
assumption h'(n*P) = n*h/(P) for all k > 0, and hence

/ 1 / Cl
H(P) = h(P)| = —|W (" P) = h(nP)| =< —

for all k, whence, for k — oo, we obtain h/(P) = h(P). O

2.6 Infinite descent on elliptic curves

In this section, using the theory of heights on elliptic curves, we can finally
make precise the infinite descent procedure described at the the end of section
2.3. For this let E be a given elliptic curve defined over the number field K.
We shall prove in the next section, that E(K)/mE(K) is a finite group for
each integer m > 2. As already indicated before this, together with the
infinite descent procedure, implies that F(K) is a finitely generated group.
The descent procedure is effective, i.e. it shows how to calculate generators for
E(K) (provided we we can compute a set of representatives for the quotient

Let 2R be a system of representatives for E(K)/mE(K) for a fixed m > 1.
For this set of representatives let

C :=2max{h(P)|P € R}.
We then have, for all P € F and all R € fR.
h(P + R) = 2h(P) — h(P — R) + 2h(R) < 2h(P) + C.

Let now P € E(K). We define a sequence of points P, € F and @Q; € R
by Py =P and for [ > 1

mbP = P — Q1.
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Then

h(R) < - (2h(Pr1) + O)

2 1 2 4 2i-1
< Wh(P)+C(ﬁ+m+%+”'+—m2(l*1))
2! C
< Wh(P) t s

Finally, let RRg be the set of all Q € F(K) with h(Q) < C/(m? — 2). This is
a finite set. Since the set of all Q with h(Q) < C/(m? —2) + .1 is also finite,
we can find a ¢ > 0 such that Ry coincides with the set of all ) € E(K) with
hQ) < C/(m? —2) +e.

But then we conclude that P, € Ry, if [ is large enough. In other words
the set RUNRy is a set of generators for E(K'). The set Ry can be calculated
by a systematic search.

2.7 The Mordell-Weil theorem

Again, throughout this section, £ denotes an elliptic curve defined over a
number field K. Moreover we fix an integer m > 0. The purpose of this
section is to prove

Theorem 2.14. (Weak Mordell-Weil theorem) The group E(K)/mE(K) is
finite.

Together with the infinite descent procedure of the last section this implies
then strong Mordell-Weil theorem

Theorem 2.15. The group E(K) is finitely generated.

The proof of the so-called weak Mordell-Weil theorem has actually noth-
ing to do with heights, but uses what is called Kummer theory for ellip-
tic curves. However, we include it here for the sake of completeness. The
Mordell-Weil theorem was actually first proved by Mordell for the case of
an elliptic curve over Q, was before already conjectured by Poincaré, and
later generalized to arbitrary K (and arbitrary abelian varieties) by Weil,
based on work of Siegel who introduced the powerful tool of heights into the
study of diophantine problems. The proof uses the two fundamental finite-
ness theorem of algebraic number theory, the finiteness of class numbers and
Dirichlet’s unit theorem.

We shall show first that we can enlarge K without restriction of generality.



48 PART 2. HEIGHTS ON ELLIPTIC CURVES

Lemma 2.3. Let L/K be a finite extension. If E(L)/mE(L) is finite, then
so is E(K)/mE(K).

Proof. Let N be the kernel of the natural map
E(K)/mE(K) — E(L)/mE(L);

thus N = (E(K) NnmE(L))/mE(K). We have to show that N is finite.
For each C' € N pick a P € C, and then a @) € E such that P = mQ@. we
set
Ao Gal(L/K) — E[m|, Ac(0)=Q7 —Q.

Note that indeed A¢(0) € Elm| since mQ° = P7 = P = mQ. If \c = ¢,
say O = P’ + mE(K) with associated m@Q)’ = P’, then Q — @' is invariant
under all o € Gal(L/K), and is hence in F(K). But this means P — P’ €
mE(K), i.e. C = C’". Thus the map C +— A¢ is injective; its image being
finite implies the lemma. ]

The proof, being a little bit puzzling at the first glance, has a very natural
explication in term of Galois cohomology. We shall explain this below (see
section 2.8).

In the following we can hence assume, by enlarging K if necessary, that

E[m] C E(K).

Note that this implies in particular the following: If () € E is such that mQ €
E(K), then L := K(Q) is a Galois extension of K. Indeed, if 0 : L — C is
an embedding leaving K invariant, then L7 = K(Q7). But Q7 € Q + E[m]
(since m(Q7) = (mQ)?) = mQ), and hence Q7 € L, i.e. L7 = L.

We set

L:=K(Q|QP € E(K))/qquadG = Gal(L/K).

Then L is a Galois extension of K (a priori possibly infinite). We have a
map

E(K) x G — E[m],

given by
(Po) — Q% —Q,

where @) is any point of E such that m@Q = P. (We recall that such a point

@ always exists since multiplication by m is a nonconstant morphism.)
Note that this definition does not depend on a particular choice of () since

any two inverse images of P under multiplication by m differ by an element
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of E[m], which, as subset of E(K), is invariant under G. The map is actually
bilinear. It is linear in the right argument since

QT=(Q-Q+(Q"-Q) =(Q -Q)+(Q -Q),

where we used that Q7 — @ is in E[m] and hence stable under G. It is
obviously linear in the first argument.

The left kernel of the pairing (i.e. the subgroup of P € F(K) such that
(P,G) = 0) clearly contains mE(K); in fact, it equals mFE(K). Indeed, if
a @ € E with P := mQ € E(K) satisfies Q7 = @ for all 0 € G, then
Q€ E(K),ie. P=m@Q € mE(K). Thus the above pairing factors through
a pairing

E(K)/mE(K) x Gal(L/K) — E[m],

the so-called Kummer pairing, which is left non-degenerate. Or, to state this
differently, the associated homomorphism

E(K)/mE(K) — Hom(G, E[m))

is injective. For proving the weak Mordell theorem it thus suffices to show
that L is a finite extension of K. Hence, we start now to investigate more
closely the field L.

First of all we note that the Kummer pairing is even perfect. Namely,
for a fixed o, let Q7 = @ for all @ with m@Q € E(K). This means that
o leaves invariant L, and hence equals 1. Hence G embeds injectively into
Hom(E(K)/mE(K), E[m]), In particular, L is abelien with exponent m.

We now assume that E is given by a Weierstrass equation of the form
y? = 23+ Az + B with A and B being integral algebraic integers (in K). This
is no restriction of generality since for each pair A, B € K we can find an
integer N > 0 such that N*A and N°B are integral, and we may the consider
y* = 23 + N*AX + N°B, which is isomorphic to F via (z,y) — (N%z, N3y).
We use A for the discriminant of F| i.e.

A =—4A% - 27B%
Under this assumption we then have

Lemma 2.4. Let p be a prime ideal of K not dividing the discriminant A
of E. Then L is not ramified at p.

Proof. For P € E(K) let M = K(Q € E|mQ@Q = P). It suffices to show that
M is unramified at p (since L is is the compositum of all such M).

Indeed let D, be the decomposition group of p i.e. the subgroup of all
o € G leaving invariant one prime ideal (and hence all prime ideals) B of M
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above p. Let I, be the inertia group at p, i.e. the subgroup of ¢ € D, such
that 7 = 2 mod P for all z € O, where O is the ring of integers of M. That
M is not ramified at p is equivalent to the statement that I, is trivial.

For proving this we consider, E , the curve obtained from £ by reducing
modulo . More precisely we consider the following: If P =[x : y : 2] is a
point of F(M), then we may assume that x,y, z are in O, and at least one
homogeneous coordinate is not divisible by B (indeed take any homogeneous
coordinates of P in M and divide by the the one with smallest 3-order; since
the new homogeneous coordinates are B-integral, we can find an integer N #
0 and not divisible by 8 such that multiplication by N yields homogeneous
coordinates in O). We then set p(P) := [T : i : z], where the tilde denotes the
class modulo . This does not depend on the special choice of homogeneous
coordinates. The association P — P thus defines a map

E(Lp) — E(O/R) ={[7 : 7 : 3] | %2 = 2° + Azz® + z° mod P}.

It is easy to see that F(O /) is a group (defined analogous to the group
structure on E(K)), and that the reduction map is a group homomorphism.
Moreover, it is a fundamental fact that the restriction of the reduction map
to

Elm] — E(O/%)

is injective if the discriminant of £ is not divisible by B (or, equivalently, not
divisible by p). This is obvious for m = 2 (the case, which actually suffices
to deduce the Mordell-Weil theorem). In this case [0 :1: 0] and [o; : 0 : 1]
(i =1,2,3), with o; denoting the roots of f(z) := 2* + Az + B = 0, are the
points of E[2] (recall that a; € K since E[2] C E(K)). Obviously they are in
fact incongruent modulo ‘B if and only if 8 does not divide the discriminant
A = [[,;(ai — a;)*. For general m see e.g. [Sill], VII Proposition 3.1(b).
Let now o € I,. Then

p(Q7 = Q) = p(Q%) — p(Q) =0

for all Q@ € E(M). On the other hand side, Q7 — Q € E[m] for m@Q = P. By
the injectivity of the last map hence Q7 — @) = 0. Thus o is the identity on
M, showing that I, is trivial and thus proving the theorem. O]

Our information about L obtained so far suffices to prove that is is finite
over K. One has the following general theorem:

Theorem 2.16. Let L be an abelien extension of K with exponent m, and
which is ramified only at a finite number of primes. Then L is a finite
extension of K.
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Proof. Let S be the set of prime ideals of K, where L is ramified. By en-
larging S we can assume that all prime ideals dividing m are contained in S.
Moreover, by again enlarging if necessary, we can even more assume that the
ring R of S-integers in K is a principal ideal domain. Indeed, let A be the
class number of K, pick prime ideals p; (1 < 7 < h) which represent the ideal
classes of the class group of K, and adjoin to S all prime ideals conjugate
to one of these prime ideals; clearly, p} R = R for all integers n (if p € p; is
a rational prime then p~' € R). But then, if M C R is an ideal of R (and
hence M N O is an ideal of the ring of integers O of K), then, on writing
MNOas MNO = oij p?j with suitable integers n; and suitable a € O,
shows (M NO)R = aR. But (M NO)R = M (since, for each o € M, we can
find a rational integer N € R, only divisible by prime ideals in S, such that
Na € O; but then a € (M NO)R since 1/n € R).

Finally, we leave it to the reader to verify that, by adjoining mth roots
of unity to K and L, one can assume without loss of generality that K
contains all mth roots of unity. Or else the reader can restrict to the case
of m = 2, where this is automatically satisfied, and which suffices for the
proof Mordell-Weil theorem (and which in turn implies the weak version for
arbitrary m > 2 anyway).

The main theorem of Kummer theory states that L is then a subfield of
K(%/a|a € K) ([Lan2], VIII, §8) or any other reasonable text book including
sections on Galois theory). Again, it is a straight-forward exercise in Galois
theory to verify this statement for m = 2.

To begin with the proper proof of the desired theorem, we remark first
of all that, for a € K, the field K( {/a) is unramified at a prime p fm if and
only if m|ord,(a) (Exercise).

Thus, if we let T be the set of classes a(K*)™ in K*/(K*)™ such that
m|ordy(a) for all p & S, then

L C K(%/a| (aK*)™ € T).

We thus want have to show that 7" is finite. For this let R* be the group of
units of R. Clearly, ord,(a) = 0 for all p ¢ S. Hence we have the natural
map

R —T.

We claim that it is surjective (for our special choice of R). Indeed, let a € K*
represent an element of 7. Then the (fractional) R-ideal aR is the m th power
of an R-ideal (consider the O-prime ideal decomposition of O, multiply by
R, and use that pR = R for any p € §). But R is a principal ideal domain,
and hence aR = b™ R for some b € K, whence a = 0™e for some unit e € R*,
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proving the surjectivity of our map. This map factorizes then to a surjective
map R*/(R*)" —T.

By Dirichlet’s S-unit theorem R* is finitely generated (see [Lan3] V§1),
hence R*/(R*)™, and thus T too, is finite. O

2.8 Supplements

The Kummer pairing E(K)/mE(K) x G — FE[m| can be interpreted as
injection

§p: B(K)/mE(K) — HY(G, E[m]).
Here H'(G, E[m]) is the first cohomology group of G := Gal(Q/K) acting
on E[m|. Recall that, for any abelian group M which is a G-right module,
this is the group

) B {c:G— M|c(or) =c(o)” +c(1)}
H(G7M)_{C:G—>M|E|m€MVJEG te(o) =m7 —m}

If E[m] C E(K), as we assumed, then H'(G, E[m]) is nothing else than the
group of homomorphisms G — E[m]. Moreover, the map dg is nothing else
as the map induced by the first connecting homomorphism, usually denoted
0, in the long exact sequence of homology groups

0— Em|(K) — E(K)@ > xm >> E(K)a > § >> H'(G, E[m])
associated to the short exact sequence of G-modules
0— E[m] - FQ > xm >> E — 0.

Note that the map dp exists for arbitrary F defined over K, not just for
those with E[m] C E(K). Along these lines the given proof of the Mordell
theorem may be reinterpreted and reanalyzed in terms of Galois cohomology.

The approach to the weak Mordell theorem in section 2.3 using the map
E(Q)/2E(Q) — (Q*/Q*)?, can easily be generalized to arbitrary number
fields (see [Lanl], V, §1), and it can also be generalized to arbitrary m (see
e.g. [Sil1], X, Theorem 1.1). It is related to the second proof as follows.

By Hilbert’s theorem 90 (which states H'(Gal(Q/Q), Q") = 0) we know

that any homomorphism
a:Gal(Q/Q) — {£1}

is of the form a(o) = /a’ /\/a with a suitable a € Q*. Hence we have an
isomorphism

i : Q°/Q* — Hom(Gal(@/Q), {£1}).



2.9. LOCAL DECOMPOSITION 23

Suppose, we have a perfect pairing es : E[2] x E[2] — {£1}. Then we can
define a unique map v such that the following diagram is commutative:

E(Q)/2E(Q) x B[] —  Q/Q"

6R><1J/ 6KJ/

Hom(G, E[2]) x E[2] —— Hom(G, {*1})

2

Here (G = Gal(Q/Q), ) and €} is the map induced by e, i.e. e4(c, Q)(P) =
ea(c(P),Q) for all P,Q € E[2]. Choosing a basis Py, P, for E[2], we then

obtain an injection
71 E(Q)/2E(Q) — (Q/Q7), P (v(P.P),v(P ).

Now, for e; one may take the so-called Weil pairing, which is defined as

ea(P, Q) = go(X + 5)/gq(X),

where gg € K(F) is any function with divisor

div(g) = > (R) —4(0),

2R=Q

and where X is any point of E such that go(X + S) and gg(X) are both
different from 0 and oo (see any text book on (algebraic) elliptic curves) If
@ = (,0) in affine coordinates, then it is not hard to check that g3 (V) =
xz(2V) —a for all V € E (after suitably normalizing gg). Using this one can
finally verify that v is the map used in section 2.3.

2.9 Local decomposition

As in the case of algebraic numbers the canonical height on an elliptic curve
has a decomposition into local contributions. In this section we describe the
corresponding formulas. Again, we assume throughout that F is given by an
equation of the form

E:y=1"+Az+B (A BcK),

where, as usual, K denotes a number field.
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2.9.1 The Green’s function of an elliptic curve

We start by describing the archimedian contributions. It is a well-known
and classical fact that there exist a lattice in C of the form L = Z71 + Z with
Im(7) > 0 and a complex number A # 0 such that the map

. [p(T,2) : %p/(T,Z) (1) itz L
[0:1:0] ifzelL

defines a surjective group homomorphism
exp: C — E'(C)
with kernel L, where E’ is the elliptic curve
B y? =2* 4+ XAz + \B.

Here p(7, z), for fixed 7, as function of z, is the classical Weierstrass g func-
tion associated to the lattice L, and ¢/(7, 2) is its derivative with respect to
z. Thus, p(7,z) is meromorphic in C with poles only in L, periodic with
respect to L, and

p(1,2) = ; + 0(2) (z—0).

These three properties uniquely determine p(7, z) (since the difference of any
two such functions would be holomorphic on all of C, periodic under L, hence
bounded on C, hence constant by the maximum principle, and finally equal
to 0 because its Taylor development at z = 0 starts with positive powers
of z). We use here the name exp because this is natural when viewing
E(C) as Lie group. Note that exp is continuous, when we equip E’(C)
with the natural topology (inherited from the natural quotient topology of
P%(C) = (C3\ {0})/C*). To check this at points in L write
1 ( o(T, 2) 1

[@(T, Z) : 59/(7', Z) : 1] - %p/(T, Z) L %@I(T, Z) )

an let z tend towards a point in L.

Clearly E’ and E are isomorphic (as elliptic curves over C) via the map
(z,y) — (Az,\3y). For the following we assume that F = E’ (and hence
A =1). Of course, then A, B are not necessarily algebraic numbers.

One can even more introduce a natural structure of Riemann surface on
C/L and on E(C) so that the map C/L — FE(C) becomes an isomorphism
of Riemann surfaces. The map exp induces an isomorphism of fields

exp” : K(E)e — M(L),



2.9. LOCAL DECOMPOSITION 95

where K(F)c is the field if algebraic functions on E, considered as algebraic
curve over C, and where M(L) is the field of meromorphic functions on C
which are periodic with respect to L.

We use o(r,z) for the Weierstrass o function associated to L. It is
uniquely characterized by the fact that, as function in z, it is odd and holo-
morphic on C, satisfies o(7, z) = 24+0(2?) (2 — 0), and its second logarithmic
derivative equals p(7, ). Setting

_2miT 2miz

q_e ) C:e ’

one has the following explicit formula ([Skor|, Appendix 1)

o —271'7)%(7’)22 CI/Q — C—l/Z (1 — qng)(l — qn<—1>
o(r,z) =e s }:[1 (- ¢ )
77(7_) _ q1/24 H(l . qn>
n>1

(Here 7 is the ordinary derivative of n with respect to 7.) It is straight-
forward that the right hand side of this formula satisfies in fact all the listed
properties, which proves the existence of o(7,z) (and p(7,2)) and, by the
uniqueness, the identity in question. We leave the details to the reader (or
see [Skor], Appendix 1). We cite without proof the following lemma (see)

Lemma 2.5.
(2mi)?n** (1) = disc(z® + Az + B) = —(44° 4 27B?).

Instead of in o (7, z), we are more interested in the so-called Siegel function

S(z) =qu=¢72 (¢ - D) JJ(1 - q"Q)(1 —g"¢7Y).

n>1

We suppress the dependence of 7. Note that S(z), considered as function
of z is nothing else but o(7, z), up to multiplication by trivial factors. The
important point is that S(z) has a nicer transformation law under L than
o(7, z). Namely, one has

Lemma 2.6.
S(z+1)=-5(2), S(z+7)=—q2¢"'S(2).

Proof. This can be verified by a straight-forward calculation. ]
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From this we deduce that
y2
G(z) :==e " [S(2)

is periodic with respect to L. Here y and v are the imaginary parts of z and
T, respectively.

factors through a function on C/L. This function is Green’s function
associated to F. Its important property is

Theorem 2.17. Let f € K(E)c, let D =3"_,n;(P;) (n; € Z, P; € E(C))
its divisor, and let P; = exp(z;) with suitable z; € C. Then there exists a
constant ¢ such that

flep(z)| =[] Gle =)

for all z € C.
Proof. The function

T

9(2) = flexp(2))/ [ [ Sz = 2)™

J=1

is holomorphic on C and has no zeroes. From this it is easy to verify that
g(z) :==logg(z) + 7r1 XT: n; Im(z — z;)?
: v j j
is harmonic (though G(z) itself, because of the factor e=™/¥ | is not harmonic).
Note that .
Z n;Im(z — 2;)?
j=1

is harmonic since D, as divisor of a function on K(F)c, satisfies deg D =

>j—1ny =0.
But g is periodic with respect to L, hence bounded on C, and thus con-
stant by the maximum principle. O]

As corollary we obtain
Corollary 2.17.1.

(z —a)G(z+a)

o) = ola)] = A S
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Proof. By the foregoing theorem we have, for fixed a and all z

() - pla)] = U e

with a suitable constant c¢. Now, if we multiply by |z|* and let z tend to 0,
then the left hand side tends to 1. For the right hand side the limit is

=z = ¢/ @2nnl*)?,

which proves the lemma. ]
We finally introduce the so-called Néron function on E(C)\{0} by setting
A(P) = —log G(2),

where P = exp(z) (this does not depend on a particular choice of z since
G(z) is periodic with respect to L.)

Theorem 2.18. The Néron function satisfies the following three conditions:

1. X is continuous and is bounded on the complement of every open neigh-

bourhood of 0.
2. The limit limp_o (M(P) + L log |z(P)|) exists and is finite.
3. For all P,Q € E(C) such that P,Q,P + Q,P — Q # 0 one has

AP+Q)+ AP~ Q) = 20(P) +2X(Q) ~ log |«(P) ~ 2(Q)| +  log ||

Moreover, X is the only function on E(C)\ {0} satisfying these conditions.

Proof. Property (i) to (iii) follow immediately from the corresponding prop-
erties for —log G(z) on setting P = exp(z) and @ = exp(a), so that, in
particular z(P) = p(T, 2).

For proving the uniqueness statement we note that the difference f of any
two functions satisfying the three properties can be continuously extended to
0 (by (ii)), is hence bounded on E(C) (by (1)), and satisfies the parallelogram
law

f(P+Q)+ f(P—=Q)=2f(P)+2/(Q)
(by (iii)), by continuity even for all P, Q. In particular, f(0) = 0 (set P =
Q) = 0), hence f(2P) = 4f(P) (set P = (), and then f(2"P) = 4" f(P) for
all P and n. Letting n tend to infinity and observing that f(2"P) remains
bounded it follows f(P) = 0. O
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If £/ : y* = 23 + Az + B’ is an elliptic curve isomorphic to E, say
via a : (z,y) — (a*z,a’y), we transfer A to a function X on E’ by setting
A" = X oa. Note that the conditions (i) and (iii) remain literally valid for
the new function A on E’. Indeed, if we write z/(P) for the first coordinate

function on E’, then we have (zo«)(P) = a*z’(P), whereas the discriminant

A" of ' is
A = —(4A” + 27B”) = —a'?(4A° + 27B?) = oA
(since A’ = a*A and B’ = a®B) Hence

log#(a(P)) ~ #(a(Q))] ~ 54| = log |#(P) — /(Q)] - 51V

Hence we can summarise by saying that on each elliptic curve E defined over
C, given by a Weierstrass equation with discriminant A, there is a unique
function A : E(C) \ {0} — R which satisfies properties (i) to (iii).

The condition (iii) can be replaced by another one, which is technically
simpler to verify.

Theorem 2.19. Let E : y* = 23 + Az + B an elliptic curve defined over C.
Then the Néron function X\ is the unique function X : E(C)\ {0} — R which
satisfies conditions (i), (i1) of Theorem 2.18 and the condition:

(i1i)’" For all P € E(C) such that 2P # 0 one has
1
A(2P) = 4\(P) — log |2y(P)| + 1 log |A|.

Proof. The proof that A is uniquely determined by (i),(ii) and (iii)’ is exactly
the same as the uniqueness proof of the preceding theorem. In fact, all we
used from (iii) is that the difference f of any two Néron functions satisfies
f(2P) = 4f(P), which is already implied by (iii)’.

For proving (iii)” we assume first of all as before that E(C) is the ho-
momorphic image under the exponential map exp with respect to a suitable
lattice L := Z7 + Z. Then, setting P = exp(z) (so that 2P = exp(2z) and
1¢/(7,z) = y(P)) we have to prove
G(22)

G(2)t

But this follows immediately from Theorem 2.17 on comparing divisors on
both sides (note that G(2z) = 0 if and only if z € 1L), which proves the
identity up to multiplication by a constant, and by multiplying by |z|*> and
letting z tend to 0.

Finally one proves as for condition (iii) that (iii)’ remains literally valid
for the Néron function on an arbitrary elliptic curve (over C) in Weierstrass
normal form. O

|9'(7, 2)| = |Af
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2.9.2 The Néron functions associated to places

In this section we return again to an elliptic curve E defined over a number
field K, say

E:y*=2"+Az+B, A=—(4A°+27B%), (A, B € K)

If v is a place of (i.e. equivalence class of valuations on) K, then we use
||.||» for that valuation in v, whose restriction to Q equals the ordinary p-adic
valuation | - |, for some prime number p or the usual archimedean absolute
value on Q. We then have, with a suitable integer n, > 1, the identity

oy = el

for all « € K. We use K, for the v-adic completion of K, and we the same
symbol for the extension of || - ||, to K,.
Generalising the theorem of the last section one can prove:

Theorem 2.20. Let v be a place of K. Then there exists a unique function
Ao 0 E(K,)\{0} — R satisfying properties (i) to (iii) of Theorem 2.18 with C
replaced by K, and the complex absolute value replaced by ||-||,. The function
Ay can also be characterised as the unique real-valued function on E(K,)\{0}
which satisfies conditions (i), (ii) and condition (iii)’ (of Theorem 2.19 with
the same replacements as before). Assume that A and B are integral. Then,
for all but finitely many v one has

A(P) = 5 max(0,log (P

for all P € E(K,) \ {0}.

The function A, is called the local Néron function on E associated to
v. The uniqueness of A, follows literally as in the proof of Theorem 2.18.
If L is an extension of K, and if w is a place of L over v, then, since the
restriction of A, to E(K,) \ {0} satisfies (i) to (iii), whence A\, (P) = \,(P)
for P € E(K)\ {0}.

If v is archimedean, i.e. if K, = C or K, = R, then the existence of
Ay is ensured by Theorem 2.18. We shall not give the complete proof of
the preceding theorem in the case of a non-archimedean v, but refer to the
literature (cf. [Sil2]).

Here we content ourselves to prove the following theorem, which implies
a part the preceding one for non-archimedean v where E has good reduc-
tion (and a little bit more). To state this theorem we need some notation.
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Let v € Pk non-archimedean and assume that A and B are v-integral (i.e.
HAHU7 HBHU S 1) Let

O, ={ze K,||z]l, <1}, m,={zeK,]||z], <1}

Denote by E the curve over the field O, /m,, obtained from E by reducing A
and B modulo the maximal ideal m,. We have the map (in fact a homomor-
phism)

E—E,  P—P

obtained by reducing modulo m, (as explained in the proof of Lemma 2.4).
We set

Ey(K,) = {P € E(K,)| P is a nonsingular point of E}.
It can be proved that this is a subgroup of E(K,) (see e.g. [Sill], VII §2).

Theorem 2.21. Let v € Pk non-archimedean, and assume that A and B
are v-integral. Then

1 1
A(P) = 5 max(log J(P)],, 0) - 7 log | All

for all P € Ey(K,) \ {0}.

Proof. Denote the function on F(K,) \ {0} defined by the right hand side
of the desired formula by A. Clearly, A satisfies properties (i) and (ii) of
the local Néron function. Writing |z| for |||, we shall show the duplication
formula

1
A(2P) = 4\(P) — log |2y(P)| + 2 log |A|

for all P € Ey(K,) \ {0}.

This than implies that the restriction of A\, to Ey(K,) \ {0} equals A
by the usual argument. Indeed, the difference f = XA — )\, extends to a
continuous and bounded function on all of the subgroup Ey(K,) of E(K,).
One has f(2P) = 4f(P), by continuity even if P = 0 or 2P = 0. But then
f(P)=4""f(2"P) for all n, which implies f(P) = 0 since f is bounded.

To prove the duplication formula for A we note first of all (writing z; =
x(P) and y; = y(P)) that

F.(P)? af—2A2? —8Bx; + A*> ¢

2P) = -2 = =: =
T(2P) = =2n 17 ¥’

where F(z,y) = y* — (2* + Az + B) and F,, F, denote partial derivatives.
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Hence, the duplication formula is equivalent to
1
3 max(log |¢| — log 1], 0) = 2max(log |z1|,0) — log |2y1],

which, using [¢|? = |2y|, can be written as

max(|g], [¢]) = max(|a: |, 1)

Assume, first of all that |z;] > 1. Then, using that A, B are v-integral,
we have |¢| = |z1]* and |[¢] = |[4y?| = |4(2} + Axy + B)| = |423] < |21 |* = |9
Hence the desired identity is true.

Now assume that x; is v-integral. Since A, B are v-integral y; is then v-
integral too, in particular, we have P = [x; +m, : y; + m, : 1]. We shall now
use that P is a non-singular point of the reduced curve E. This is equivalent
to |Fy(x1,y1)] =1 or |Fy(x1,y1)| = 1. Since

¢ = Fo(P)* = 201 F,(P)* ¥ = F(P)’
this implies that indeed max(|¢|, [¢|) = 1. O

Note that in the case of good reduction, i.e. if ||Al, = 1, we have the
explicit formula

\(P) = 5 max(log [(P)].,0),

and that we have actually proved that the right hand side satisfies the defining
conditions (i), (ii) and (iii)” of the local Néron function at v.

2.9.3 The decomposition formula

Using the local Néron functions A\, we can finally give the desired local de-
composition of the canonical height h.

Theorem 2.22. Let E be an elliptic curve defined over the number field K,
let h be the canonical height on E, and, for each v € Pg let \, be the local
Néron height function associated to v. Then

> A(P)

vE Pk

for all P € E(K) \ {0}.
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Proof. Note that by Theorem 2.20 for each P € E(K), P # 0 we have
Ao(P) = $max(log ||z(P)|», 0) for almost all v. Hence the sum on the right
hand side of the desired formula is actually finite (and hence well-defined).
Denote by h'(P) the function on E(K) defined by the right hand side of the
desired formula if P # 0, and such that A'(0) = 0.

To prove h = I/ it suffices to prove that |1/(P) — 1h,(P)| is bounded and
that ' (2P) = 4h/(P) (see Theorem 2.13); here the bars denote the ordinary
absolute value on R.

The latter follows, for 2P # 0, immediately from

Ao(2P) = 4A,(P) = log [ 2y(P)l[v + ; lOgIIAII

and the product formula (here written additively)

Z ny log ||z, =

vE Pk

valid for all z € K, x # 0. For P = 0 its is trivially true since A'(0) = 0 by
definition. For 2P = 0 and P # 0 we have to show h'(P) = 0. This can be
done e.g. by the triplication formula A\, (3P) = A\, (P)+log || f(P)||+2 log | A
valid for all P with 3P # 0 (cf. [Sil2], Exercise 6.4 (e); here f € K(FE)
independent of P).

From property (i) and (ii) of the Néron function we deduce the existence
of constants ¢, such that

1
—c, < \(P) — §logmax(||a:(P||v, 1) <e,

for all v € P and all P € E(K) \ {0}. Even more, by the last theorem we
can and will choose ¢, = 0 for all but a finite number of v. Multiplying by
n,/[K : Q] and summing over all v then yields

W' (P) — —h (P)

Cu,

’UEPK

and hence the desired inequality. O
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Appendix: Exercises

The following exercises were given to the student at the end of the course as
a written examination (in French). However, they supplement some of the
threads of these notes and may hence be of independent interest.

3.1 Mesure de Mahler de polynomes
en plusieurs variables

Pour un polynéome P € C[X3,..., X,], P # 0, on pose

1 1
wu(P) == exp (/ / log]P(ezmtl,...,e%it")]dtl---dtn>,
0 0

et on pose p(0) = 0. Dans 'exercice suivant la formule du cours

1
/ log |a — ™| dt = log, |a|
0

sera utile!.

(i) En utilisant que p(f) > |aq| pour tout polynome f(z) = ag X% +---+aq
en une variable, montrer par récurrence sur n que u(P) > 1si P a des
coefficients entiers.

(ii) Montrer : Si e| > D77 ;4 o] pour un 0 < k& < n, alors
/,L(ao -+ Gle -+ a2X2 + e+ aan) = \ak|
En déduire pu(X; + Xo + k) = |k| pour |k| > 2.

'Nous utilisons la notation log, = = log max(z,1) (z € R, z > 0).

63
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(iii) Calculer u(X; + Xs).

(iv) Montrer d’abord que u(X;+Xo+1) = fj{%
log |1 + e*™| = Relog(1l + €*™) comme série en puissance de e
échanger l'intégration et sommation (on admets la justification), et en

déduire que

log |1+e*™| dt. Devélopper

2mit
)

logu(X1 + X5 + 1) = %L(Z <§>)7

ol L(s, (5)) = i (g) n=® (s>1).

n=1

On utilisera ) (%) nt=—4"°%" (%) nt Y, impair (g) n-e.

3.2 Calcul rapide de ’hauteur canonique

Soit E : y* = 23 + Az + B une courbe elliptique définie sur Q. Dans cet
exercice on se propose de démontrer une formule pour ’hauteur canonique
h sur E, qui peut étre utile pour un calcul rapide. Pour simplifier nous
supposons le suivant :

1. A B e Z.
2. Ona f(z):==2’+Az+B=(x—a)(z—a)(z— ) aveca € Ret 3 > 0.
Soit ¢(x) le polynéme (de degré 4) tel que

_ 9(=(P))
P = 35Gm)
pour tout P € E(R), P # 0. Nous posons h'(0) = 0, et pour P € E(Q),

P #0, z(P) = § avec a,b € Z tels que pged(a,b) = 1 nous posons

=1
W(P) =loglal + ) | 5 log| () /7,
n=0

X ¢ ()
— 2(P), 1., = > 0).
ou zg=x(P), Tpu1 () (n>0)

(i) Montrer que, pour x € R, x > (3, on a f(x) # 0 et ¢(x)/4f(x) > 5.
Calculer ¢(x) et montrer que ¢(z)/z* — 1 pour t — oc et ¢(3)/* > 0.
En déduire qu’il existe des constantes ¢; > 0 et ¢y telles que 'on a
c1 < é(x)/x* < ¢y pour tout x > f3.
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(ii) Déduire de (i) que la somme qui définit A'(P) est bien-définie et con-
verge absolument (en fait tres rapidement).

(iii) En utilisant sans preuve le fait que pged(¢(a/b)b*, 4 f(a/b)b*) = 1, mon-
trer que h/'(2P) = 4h/(P).

(iv) Montrer : Il existe une constante ¢ tel que |h'(P)—log max(|al, |b])| < c.
(Ici estimation de (i) sera encore utile).

(v) Déduire de (iii) et (iv) que h(P) = +h'(P).

)

3.3 Fonctions de Néron

Soit E : y? = 23 + Ax + B une courbe elliptique avec discriminant A définie
sur le corps de nombre Ky, soit | - | une valuation de K, et K la complétion
de Ky par rapport a | - |. Nous allons montrer dans cet exercice 1'existence
de la fonction de Néron en |- |. Plus précisemment, nous nous proposons de
montrer qu’il existe une fonction A\ : E(K) \ {0} — R tel que

1. X est continu est borné sur le complément de tout voisinage de 0.
2. limp_o(A(P) — 3 log|z(P)]) existe (et est fini).

3. A(2P) = 4A(P) — log |2y(P)| + $log|A| pour tout P € E(K) tel que
2P 0.

(0) Montrer que z(2P) = 4‘?((5(1;)))) pour tout P € E, ou f(z) =23+ Az + B

et ¢(z) = —8xf(z) + f'(z)*.
(i) Pour P € E(K), 2P # 0 on pose

—~

1
f(P):= 5 log, |2(2P)| — 2log, [x(P)| +log [2y(P)| — 7 log |A].

N

Montrer que g(P) := exp(f(P)) peut étre prolongé a une fonction
continue sur F(K). Calculer g(0) et en déduire qu'il existe un ¢ > 0
tel que g(P) > 0 pour |z(P)| > c.

(ii) Montrer que les polynomes ¢(x) et 4f(x) sont relativement premiers,
et qu’ils existent donc des polynomes a(z), b(x) tel que 1 = a¢ + 4bf,
En déduire que g(P) > 0 pour z(P) < ¢ (avec le ¢ de (i)).

(iii) Déduire de (i) et (ii) que f(P) peut étre prolongé uniquement & une
fonction continue et bornée sur tout F(K).
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(iv) Montrer, en utilisant (iii), que la somme
p(P) =) 4" f(2"P)
n=0

converge pour tout P € F(K) et définit une fonction continue et bornée
o E(K) — R qui satisfait f(P) = 4u(P) — p(2P) pour tout P €
E(K).

(v) Montrer, en résumant, que la fonction A\(P) := A\{(P) + pu(P), définie
pour P € E(K), P # 0, satisfait aux propriétés 1. a 3.
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