
Spring-School RWTH Aachen 2008
Mathematik mit SAGE

Wir wollen uns in den Umgang mit SAGE einarbeiten, indem wir, in die
nachstehend aufgeführten Gruppen aufgeteilt, das jeweils beschriebene Pro-
jekt bearbeiten. Hierzu ist es notwendig, dass die Teilnehmer sich soweit als
möglich schon vorab mit den für das Projekt notwendigen mathematischen
Begriffen und der eigentlichen Problemstellung vertraut machen. Sie finden
zu Ihrem Projekt jeweils eine Liste der Literatur, mit der Sie sich vor Beginn
der Spring School auseinandersetzen sollten. Wir haben versucht, diese Liste
möglichst kurz zu halten; dennoch werden Sie sicherlich je nach Vorbildung
noch zusätzlich einige Begriffe selbständig erarbeiten müssen. Bei Ihrer Pro-
jektbeschreibung finden Sie eine Liste derjenigen mathematischen Begriffe,
die Sie zu Beginn der Veranstaltung in jedem Fall nachgelesen haben sollten.

Die zweite Schwierigkeit, die es zu meistern gilt, ist das Erlernen von Py-
thon und SAGE. Zwar werden wir uns beim ersten Treffen hiermit beschäfti-
gen, jedoch wird die 90-minütige Einführung natürlich nicht wirklich ausrei-
chen, um Sie zu einem Experten zu machen. Daher ist es wichtig, dass Sie
auch schon vorab etwas in der Dokumentation zu Python [Python] und zu
SAGE [SAGE] querlesen. Falls Sie Python zur Verfügung haben (oder sich
zutrauen, es selbstständig zu installieren), so sollten Sie damit auch schon
etwas experimentieren.

Links

[Python] http://www.python.org/doc/current/tut/tut.html
[SAGE] http://www.sagemath.org/documentation.html
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Projekt I: Kegelschnitte

Teilnehmer

Jan HACKFELD, Margarete TENHAAK, Philipp TENHAAK

Projektbeschreibung

Sei K ein Körper und F eine symmetrische 3x3-Matrix über K mit det(F ) 6=
0, sei

CS :=
{

[x : y : z] : (x, y, z)F
(

x
y
z

)
= 0
}

der zugeordnete projektive Kegelschnitt über dem Körper K. Wir nehmen
an, dass CS nicht leer ist. Sei N ein Punkt auf CS und g eine fest vorgegeben
Gerade, die N nicht enthält, und sei CS0 die Menge, die entsteht, wenn man
aus CS die Schnittpunkte von g mit CS entfernt. Wir definieren die Summe
zweier Punkte A und B von CS0 folgendermassen: Sei gA,B die Gerade durch
A und B (die Tangente an CS durch A, falls A = B), sei S der Schnittpunkt
von gA,B mit g, sei gN,S die Gerade durch N und S, und sei schließlich C der
zweite Schnittpunkt von gN,S mit CS (und C = N , falls gN,S Tangente an CS
ist). Wir setzen A+B := C. Hierdurch wird tatsächlich eine Gruppenstruktur
auf CS0 erklärt.

Wir wollen diese Gruppen in SAGE implementieren, indem wir etwa zwei
Klassen CSGroup und CSGroupElement entwerfen.

Sofern Zeit bleibt, können wir ggf. noch einen Algorithmus implementie-
ren, der zu vorgegebenem Kegelschnitt über einem Primkörper prüft, ob er
einen Punkt enthält, und falls ja, einen solchen berechnet (Anwendung des
Satzes von Legendre).

Vorbereitung

Lesen Sie Seite 1 bis 20 in [1], und versuchen Sie den etwas abstrakten Text
zu verstehen. Überfliegen Sie anschließend im gleichen Buch die einschlägigen
Stellen zu Kegelschnitten (Conics) — Sie werden möglicherweise vieles davon
nicht vollständig verstehen, ein Blick wird dennoch nützlich sein. Blättern Sie
durch den Artikel [2]: lassen Sie sich nicht entmutigen, das meiste Vokubaluar
wir Ihnen unbekannt sein. Wenn wir währed der Veranstaltung gemeinsam
in [2] etwas ansehen, wird es Ihnen helfen, sich dort zumindest schon einmal
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grob orientiert zu haben. Überlegen Sie, welche Berechnungen zur Lösung
der Projektaufgabe notwendig sind.

Falls Ihnen Samuel zu abstrakt ist, so koennen Sie vielleicht in der Biblio-
thek [3] ausleihen; das letzte Kapitel (ab der 2. Auflage) betrifft die projektive
Geometrie.

Begriffe

Projektive Ebene über einem beliebigen Körper, homogene Koordinaten, ebe-
ne algebraische Kurve, Kegelschnitt (conic section), Formeln aus der analy-
tischen Geometrie für den Schnittpunkt zweier projektiver Geraden, für die
projektive Gerade durch zwei Punkte.

Literatur

1 Pierre Samuel, Projective Geometry. Springer 1988

2 Franz Lemmermeyer, Conics — A Poor man’s Elliptic Curves, preprint
2003

3 M. Koecher, A. Krieg: Ebene Geometrie, Springer-Verlag 1993
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Projekt II: Untergruppen von SL(2,Z)

Teilnehmer

Hatice BOYLAN, Judith KREUZER, Dominic STEFFEN GEHRE

Projektbeschreibung

Die Modulgruppe Γ = SL(2,Z) ist endlich erzeugt. Als Erzeugende kann man
etwa die Matrizen T := ( 1 1

0 1 ) und S := ( 0 −1
1 0 ) nehmen. Nach einem allgemei-

nen (und leicht einzusehenden Satz, vgl. [1], Satz 4.1) besitzt die Gruppe Γ
für jede natürliche Zahl n nur endlich viele Untergruppen mit Index n. Die-
se enthält man im Wesentlichen, indem man alle Gruppenhomomorphismen
Γ→ Sn auflistet, wo n die symmetrischen Gruppe von n Elementen bedeutet.
Hierzu wiederum benötigt man den Satz, dass Γ isomorph zum Quotienten
der freien Gruppe mit zwei Erzeugenden s und t nach dem von den Relatio-
nen s2 = (st)3 und s4 = 1 erzeugten Normalteiler ist.

Wir wollen eine Funktion findSubgroups( n) entwerfen, die alle Unter-
gruppen vom Index n in Γ ausgibt, und eine Klasse SubroupOfModularGroup,
deren Instanzen mittels eines Gruppenhomomorphismus Γ → Sn initiali-
siert werden. Methoden dieser Klasse sind etwa: isCongruenceSubgroup(),
genus(), nEllipticFixedPoints() etc.

Vorbereitung

Lesen Sie die ersten Abschnitte in [2], die sich mit Γ = SL(2,Z) beschäftigen.
Schauen Sie sich insbesondere die Sätze 1.2.4, 1.2.5 an. Sehen Sie sich den
Satz 4.1 in [1] an; der Beweis dieses Satzes ist der Schlüssel zur Lösung der
gestellten Aufgabe.

Begriffe

Γ := SL(2,Z), Präsentation einer Gruppe mittels Erzeugender und Relatio-
nen, Präsentation von Γ (vgl. [2], Theorem 1.2.5, nach diesem Satz ist Γ
isomorph zur freien Gruppe in den Erzeugenden v und v, dividiert durch die
Relationen v2 = (vu)3, v4 = 1), Operation von Γ auf der oberen komplexen
Halbebene, Klassifikation der Fixpunkte unter dieser Operation, Untergrup-
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pen von Γ, Kongruenzuntergruppen, Γ0(N), Γ(N), Geschlecht, Index und
Spitzen einer Untergruppe von Γ.

Literatur

1 R.C. Lyndon und P.E. Schupp, Combinatorial Group Theory, Sprin-
ger 1977

2 Rankin, Modular Forms. Cambridge University Press, 1977

3 Hsu, Identifying Congruence Subgroups of the Modular Group, Proc.
AMS 124 (1996), 1351–1359
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Projekt IIIa: Ringe von Modulformen

Teilnehmer

Anna PIPPICH, Anna POSINGIES, Daniel JACOBS

Projektbeschreibung

Wird mündlich vereinbart.

Vorbereitung

Begriffe

Literatur
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Projekt IIIb: Ringe von Modulformen

Teilnehmer

Marc ENSENBACH, Michael HENTSCHEL, Martin RAUM

Projektbeschreibung

Wird mündlich vereinbart.

Vorbereitung

Begriffe

Literatur
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Projekt IV: Höhen algebraischer Zahlen

Teilnehmer

Till DIECKMANN, Elisabeth PETERNELL, Cornelia WIRTZ

Projektbeschreibung

Die Komplexität einer algebraischen Zahl wird in der diophantischen Analysis
durch ihre HöheH(α) gemessen. Die Höhe ist immer≥ 1, und es istH(α) = 1
genau dann, wenn α eine Einheitswurzel ist. Ein Satz von Zhang besagt, Eine
algebraische Zahl kann nicht gleichzeitig nahe bei 0 und bei 1 sein, genauer:
Sind α, β zwei von 0, 1 und 1+

√
−3

2
verschiedene algebraische Zahlen und gilt

α + β = 1, so folgt

H(α)H(β) ≥

√
1 +
√

5

2
,

mit Gleichheit genau dann, wenn α oder β eine primitive 10-te Einheitswurzel
ist. In [1] wird dieser Satz auf algebraische Lösungen α, β einer beliebigen
über Q definierten ebenen Kurve verallgemeinert: Zu jeder solchen Kurve
gibt es eine Konstante C > 1, sodass für jeden (algebraischen) Punkt (α, β)
auf dieser Kurve (bis auf endlich viele Ausnahmen) H(α)H(β) ≥ C gilt. Die
Konstante kann sogar scharf bestimmt werden und wird von endlich vielen
Lösungen angenommen.

Wir wollen eine Funktion findConstant( C) entwerfen, die zu gegebe-
ner ebener Kurve C über Q die optimale Konstante C für die oben geschil-
derte Abschätzung ausgibt. Ggf. werden wir hierzu vorab noch eine Klasse
PlaneAffineAlgebraicCurve entwerfen. Anschliessed werden wir etwas ex-
perimentieren und z.B. die Konstanten C für Kegelschnitte studieren. Viel-
leicht gibt es hier etwas Neues zu entdecken.

Vorbereitung

Erarbeiten Sie sich Theorem 2.1 ([1], S. 32) und die Details des Beweises.
Lesen Sie ggf. vorab den Beweis zum Satz von Zhang ([1], S. 15), um die
Idee des Beweises besser zu verstehen. Versuchen Sie die gestellte Aufgabe
gedanklich in Teilprojekte zu zerlegen.
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Begriffe

Algebraische Zahl, affine ebene algebraische Kurve über Q (vgl. [1], S. 31],
die Höhe H(α) einer algebraischen Zahl (vgl. [1], S. 10).

Literatur

1 N-P. Skoruppa, Heights, Lecture Notes, Siegen 2003
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2 FRANZ LEMMERMEYER

Introduction

The aim of this article is to show that the arithmetic of Pell conics admits a
description which is completely analogous to that of elliptic curves: there is a theory
of 2-descent with associated Selmer and Tate-Shafarevich groups, and there should
be an analog of the conjecture of Birch and Swinnerton-Dyer. For the history and
a theory of the first 2-descent, see [6, 7, 8]. The idea that unit groups of number
fields and the group of rational points on elliptic curves are analogous is not new;
see e.g. [1, 2, 5, 14] for some popularizations of this point of view. It is our goal
here to show that, for the case of the unit group of real quadratic number fields,
this analogy can be made much more precise.

1. The Group Law on Pell Conics and Elliptic Curves

Let F ∈ Z[X, Y ] a polynomial. If deg F = 2, the affine curve of genus 0 defined
by F = 0 is called a conic. Let d be a squarefree integer 6= 1 and define

∆ =

{
d if d ≡ 1 mod 4,

4d if d ≡ 2, 3 mod 4.

Then the curves C : X2 − ∆Y 2 = 4 are called Pell conics; they are irreducible,
nonsingular affine curves with a distinguished integral point N = (2, 0).

If deg F = 3, the projective curve E described by F has genus 1 if it is non-
singular; if in addition it has a rational point, then E is called an elliptic curve
defined over Q. Elliptic curves given by a Weierstraß equation Y 2 = X3 + aX + b
are irreducible, nonsingular projective curves with a distinguished integral point
O = [0 : 1 : 0] at infinity.

Both types of curves have a long history: Pythagorean triples correspond to
rational points on the Pell conic X4 + 4Y 2 = 4, solutions of the Pell equations
have been studied by the Greeks, the Indians, and the contemporaries of Fermat,
such as Brouncker and Wallis. Problems leading to elliptic curves occur in the
books of Diophantus and were studied by Bachet, Fermat, de Jonquières, Euler,
Cauchy, Lucas, and Sylvester before Poincaré laid down his program for studying
diophantine equations given by curves according to their genus.

1.1. Group Law on Conics. The group law on non-degenerate conics C defined
over a field F is quite simple: fix any rational point N on C; for finding the sum
of two rational points A,B ∈ C(F ), draw the line through N parallel to AB, and
denote its second point of intersection with C by A + B. In the special case of Pell
conics, the resulting formulas can be simplified to

Proposition 1. Consider the conic C : Y 2 −∆X2 = 4, and put N = (2, 0). Then
the group law on C with neutral element N is given by

(r, s) + (t, u) =
(rt + ∆su

2
,
ru + st

2

)
.

It is now easily checked that the map sending points (r, s) ∈ C(Z) to the unit
r+s

√
d

2 with norm 1 in the quadratic number field K = Q(
√

∆ ) is a group homo-
morphism. Observe that the associativity of the geometric group law is equivalent
to a special case of Pascal’s theorem, which in turn is a very special case of Bezout’s
Theorem.
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1.2. Group Law on Elliptic curves. Given an elliptic curve E : y2 = x3 +ax+b
defined over an algebraically closed field K, we define an addition law on E by
demanding that A + B + C = 0 for points A,B, C ∈ E(K) if and only if A,B, C
are collinear. Since vertical lines intersect E only in two affine points, we have to
regard E as a projective curve; then vertical lines intersect E in two affine points
as well as in the point at infinity. Associativity follows geometrically from a special
case of Bezout’s Theorem.

2. The Group Structure

Let us now compare the known results about the group structure of Pell conics
over the most common rings and fields. Generally, we will study conics in the affine
plane over integral domains, and elliptic curves in the projective plane over fields.

2.1. Finite Fields. Let C : x2 −∆y2 = 4 be a Pell conic defined over a finite field
Fq with q = pf elements, and assume that C is smooth, i.e. that p - ∆. Then

C(Fq) ' Z/mZ, where m = q −
(∆

p

)f

.

If ∆ is a square mod p and p is odd, this is immediately clear since there is an
affine isomorphism between C and the hyperbolas X2 − Y 2 = 1 and XY = 1; in
particular, one has C(Fq) ' F×q = GL1(Fq) in this case.

On the elliptic curve side, we know that

E(Fq) ' Z/n1Z⊕ Z/n2Z, n2 | n1,

Moreover, we have #E(Fp) = (p + 1)− ap, where |ap| ≤ 2
√

p by Hasse’s theorem.

2.2. p-adic Numbers. If p is an odd prime not dividing ∆, then

C(Zp) '


Z/(p− 1)⊕ Zp if (∆

p ) = +1,

Z/(p + 1)⊕ Zp if (∆
p ) = −1,

Z/2⊕ Zp if p | ∆ 6= −3,

Z/6⊕ Zp if p = 3, ∆ = −3.

Reduction modulo pk then yields

C(Z/pk) '


Z/(p− 1)⊕ Z/pk−1 if (∆

p ) = +1,

Z/(p + 1)⊕ Z/pk−1 if (∆
p ) = −1,

Z/2⊕ Z/pk if p | ∆ 6= −3,

Z/6⊕ Z/3k−1 if p = 3,∆ = −3.

For elliptic curves E/Qp we have a reduction map sending Qp-rational points to
points defined over Fp. The group Ens(Fp) is the set of all nonsingular points of
E over Fp. The subgroups Ei(Qp) (i = 0, 1) of E(Qp) are defined as the inverse
images of Ens(Fp) and of the point of infinity of E(Fp) under the reduction map.
These groups sit inside the exact sequence

0 −−−−→ E1(Qp) −−−−→ E0(Qp) −−−−→ Ens(Fp) −−−−→ 0.

The structure of Ens(Fp) is known: if E/Fp is nonsingular, it was discussed in
Subsection 2.1; if E/Fp is singular, then Ens(Fp) is isomorphic to C(Fp) for a
certain conic C, and we say that E has additive, multiplicative or split multiplicative
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reduction if the conic is a parabola (C(Fp) ' Fp), a hyperbola (C(Fp) ' F×p ), or an
ellipse (C(Fp) ' Fp2 [1], the group of elements with norm 1 in Fp2).

We also know hat E1(Qp) ' Zp and that the quotient group E(Qp)/E0(Qp) is
finite. Its order cp is called the Tamagawa number for the prime p, and clearly
cp = 1 we have for all primes p - ∆. More exactly it can be shown (albeit with
some difficulty) that cp ≤ 4 if E has additive reduction, and that cp is the exact
power of p dividing ∆ otherwise.

2.3. Integral and Rational Points. Now let us compare the structure of the
groups of rational points: for elliptic curves, we have the famous theorem of Mordell-
Weil that E(Q) ' E(Q)tors ⊕ Zr, where E(Q)tors is the finite group of points of
finite order, and r is the Mordell-Weil rank. For conics, on the other hand, we
have two possibilities: either C(Q) = ∅ (for example if C : x2 + y2 = 3) or C(Q) is
infinite, and in fact not finitely generated (see Tan [12]). The analogy can be saved,
however, by looking at integers instead of rational numbers: if K is a number field
with ring of S-integers OS , then

C(OS) ' C(OS)tors ⊕ Zr E(K) ' E(K)tors ⊕ Zr

where r ≥ 0 is called the Mordell-Weil rank. Shastri [10] computed the rank r for
the unit circle over number fields K and S = ∅.

Note that the group of integral points on the hyperbola XY = 1 is isomorphic
to R× = GL1(R). Number theoretic algorithms working with the multiplicative
group of R = Z/pZ in general have an analog for conics, as we will see in the next
section.

3. Applications

3.1. Primality Tests. The classical primality test due to Lucas is the following:

Proposition 2. An odd integer n is prime if and only if there exists an integer a
satisfying the following two conditions:

i) an−1 ≡ 1 mod n;
ii) a(n−1)/r 6≡ 1 mod n for every prime r | (n− 1).

This primality test is based on the multiplicative group (Z/nZ)×, that is, on the
group H(Z/nZ) of Z/nZ-rational points on the hyperbola H : XY = 1. Something
similar works for any Pell conic:

Proposition 3. Let n ≥ 5 be an odd integer and C : X2−∆Y 2 = 4 a nondegenerate
Pell conic defined over Z/nZ with neutral element N = (2, 0), and assume that
(∆/n) = −1. Then n is a prime if and only if there exists a point P ∈ C(Z/nZ)
such that

i) (n + 1)P = N ;
ii) n+1

r P 6= N for any prime r dividing n + 1.

Of course, for both tests there are ‘Proth-versions’ in which only a part of N ± 1
needs to be factored.

The following special case of Proposition 3 is well known: if n = 2p − 1 is a
Mersenne number, then n ≡ 7 mod 12 for p ≥ 3, hence (3/n) = −1; if we choose
the Pell conic C : X2−12Y 2 = 4 and and P = (4, 1), then the test above is nothing
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but the Lucas-Lehmer test. We remark in passing that Gross [3] has come up with
a primality test for Mersenne numbers based on elliptic curves.

3.2. Factorization Methods. The factorization method based on elliptic curves
is very well known. Can we replace the elliptic curve by conics? Yes we can, and
what we get is the p − 1-factorization method for integers N if we consider the
conic H : xy = 1, and some p± 1-factorization method for general Pell conics. The
details are easy to work out for anyone familiar with Pollard’s p− 1-method.

4. 2-Descent

Consider the Pell conic C : X2 −∆Y 2 = 4. Define a map α : C(Q) −→ Q×/Q× 2

by

α(x, y) =

{
(x + 2)Q× 2 if x 6= −2,

−∆Q× 2 if x = −2.

If P = (x, y) ∈ C(Z) with x > 0, then P gives rise to an integral point on the de-
scendant Ta(C) : aX2−bY 2 = 4, where a is a positive squarefree integer determined
by α(P ) = aQ× 2, and ab = ∆. Conversely, any integral point on some Ta(C) gives
rise to an integral point with positive x-coordinate on the Pell conic C.

It can be shown that α is a group homomorphism, and that we have an exact
sequence

0 −−−−→ 2C(Z) −−−−→ C(Z) α−−−−→ Q×/Q× 2.

Moreover, we have #im α = 2r, where r is the Mordell-Weil-rank of C(Z), and
the elements of im α are represented by the first descendants Ta with Ta(Z) 6= ∅.
Thus computing the Mordell-Weil rank is equivalent to counting the number of first
descendants Ta with an integral point (see [8]).

The situation is completely analogous for elliptic curves E : Y 2 = X(X2+aX+b)
with a rational point (0, 0) of order 2, except that here we also have to consider
the 2-isogenous curve Ê : Y 2 = X(X2 + â X + b̂), where â = −2a and b̂ = a2 − 4b.
We have two Weil maps α : E(Q) −→ Q×/Q× 2 and α̂ : Ê(Q) −→ Q×/Q× 2, and
the Mordell-Weil rank is given by Tate’s formula 2r+2 = #im α ·#im α̂. For more
information on the descent via 2-isogenies we refer to Silverman & Tate [11].

4.1. Selmer and Tate-Shafarevich Group. The subset of descendants Ta :
ar2− bs2 = 4 with a rational point form a subgroup Sel2(C) of Q×/Q× 2 called the
2-Selmer group of C. Next we define the Tate-Shafarevich group X2(C) by the
exact sequence

1 −−−−→ im α −−−−→ Sel2(C) −−−−→ X2(C) −−−−→ 1.

In [8] we have shown that the 2-part of the Tate-Shafarevich group of the Pell conic
C : X2 −∆Y 2 = 4 is X2(Z) ' Cl+(k)2[2].

For a cohomological definition of Selmer and Tate-Shafarevich groups, we need
to interpret conics as principal homogeneous spaces. Every conic X2 −∆Y 2 = 4c
is a principal homogeneous space for C(Q); this is to say that the map

µ : D(Z)× C(Z) −→ D(Z) : µ((u, v), (x, y)) = (ux+∆vy
2 , vx+uy

2 ).

has the following properties:
(1) µ(p, N) = p for all p ∈ D(Q), where N = (2, 0) is the neutral element of C.
(2) µ(µ(p, P ), Q) = µ(p, P + Q) for all p ∈ D(Q) and all P,Q ∈ C(Q).
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(3) For all p, q ∈ D(Q) there is a unique P ∈ C(Q) with µ(p, P ) = q.

Here Q denotes the algebraic closure of Q.
Note, however, that only those D with c | ∆ are principal homogeneous space

for C(Z), i.e., satisfy the property that for all p, q ∈ D(Z) there is a P ∈ C(Z) with
µ(p, P ) = q. Also observe that the conics D with c | ∆ can be written in the form
aX2 − bY 2 = 4 with ab = ∆, that is, these are exactly the first descendants.

4.2. Heights. For a rational number q = m
n in lowest terms, define its height

H(q) = log max{|m|, |n|}; note that H(0) = 0 and H(q) ≥ 0 for all q ∈ Q. For
rational points P = (x, y) ∈ C(Q) on a conic C : X2−∆Y 2 = 4 put H(P ) = H(x).

Define the canonical height ĥ(P ) by

ĥ(P ) = lim
n→∞

H(2nP )
2n

.

The canonical height ĥ on the Pell conic C : X2 −∆Y 2 = 4 has all the suspected
properties (and more):

(1) |ĥ(P )−H(P )| < log 4;
(2) ĥ(T ) = 0 if and only if T ∈ C(Q)tors;
(3) ĥ(mP ) = mĥ(P ) for all integers m ≥ 1;
(4) ĥ(P + Q) ≤ ĥ(P ) + ĥ(Q);
(5) the square of the canonical height satisfies the parallelogram equality

ĥ(P −Q)2 + ĥ(P + Q)2 = 2ĥ(P )2 + 2ĥ(Q)2

for all P,Q ∈ C(Q).
In addition, there are explicit formulas for the canonical height. It is an easy

exercise to show that every rational point on a Pell conic has the form P = (x, y)
with x = r

n , y = s
n , and (r, n) = (s, n) = 1. In this case we have

ĥ(P ) =

{
log |r|+|s|

√
∆

2 if ∆ > 0,

log |n| if ∆ < 0.

The finiteness of C(ZS)/2C(ZS) and the existence of a height function implies
the theorem of Mordell-Weil.

5. Analytic Methods

5.1. Zeta Functions. Both for conics and elliptic curves over Q there is an analytic
method that sometimes provides us with a generator for the group of integral or
rational points on the curve. Before we can describe this method, we have to talk
about zeta functions of curves.

Take a conic C or an elliptic curve E defined over the finite field Fp; let Nr denote
the cardinalities of the groups of Fpr -rational points on C and E respectively, where
we count solutions in the affine plane for C and in the projective plane for E. Then

Zp(T ) = exp
( ∞∑

r=1

Nr
T r

r

)
is called the zeta function of C or E over Fp.
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For the parabola C : y = x2, we clearly have C(Fq) ' Fq, hence Nr = pr, and
we find

Zp(T ) = exp
( ∞∑

r=1

pr T r

r

)
= exp(− log(1− pT )) =

1
1− pT

.

For the conic X2 −∆Y 2 = 4 we find after a little calculation

Zp(T ) =
1

(1− pT )(1− χ(p)T )
,

where χ is the Dirichlet character defined by χ(p) = (∆/p). The substitution
T = p−s turns this into

ζp(s; C) =
1

(1− p1−s)(1− χ(p)p−s)
.

For nonsingular elliptic curves over Fp we similarly get

Zp(T ) =
P (T )

(1− T )(1− pT )
,

where P (T ) = qT 2 − apT + 1 and ap is defined by #E(Fp) = p + 1− ap.

5.2. L-Functions for Conics. Now we take the zeta function for each p and
multiply them together to get a global zeta function. The first factor 1/(1− p1−s)
gives us the product ∏

p odd prime

1
1− p1−s

= ζ(s− 1)(1− 21−s),

that is, essentially the Riemann zeta function.
The other factor, on the other hand, is more interesting:

L(s, χ) =
∏
p

1
1− χ(p)p−s

is a Dirichlet L-function for the quadratic character χ = (∆/ · ). This function
converges on the right half plane Re s > 1 and can be extended to a holomorphic
function on the complex plane.

Now the nice thing discovered by Dirichlet (in his proof that every arithmetic
progression ax+b with (a, b) = 1 contains infinitely many primes) is that, for every
nontrivial (quadratic) character χ, L(s, χ) has a nonzero value at s = 1. In fact, he
was able to compute this value:

L(1, χ) =

h · 2π

w
√
|∆|

if ∆ < 0,

h · 2 log ε√
∆

if ∆ > 0

where χ(p) = (∆/p), and where w, ∆, h and ε > 1 are the number of roots of unity,
the discriminant, the class number and the fundamental unit of Q(

√
∆ ).

The upshot is this: if ∆ > 0, the group C(Z) has rank 1; by using only local
information (numbers of Fpr -rational points on C) we have constructed a function
whose value at 1 gives, up to well understood constants, a power of a generator of
C(Z), namely the h-th power of the fundamental unit.
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The functional equation of Dirichlet’s L-function allows us to rewrite Dirichlet’s
formula as

lim
s→0

s−rL(s, χ) =
2hR

w
,

where r = 0 and R = 1 for ∆ < 0, and r = 1 and R = log ε for ∆ > 0.
Observe that the evaluation of the L-funtion (which was defined using purely

local data) at s = 0 yields a generator of the free part of the group C(Z) (which is
a global object)!

5.3. L-Functions for Elliptic Curves. The really amazing thing is that exactly
the same thing works for elliptic curves of rank 1: by counting the number Nr of
Fpr -rational points on E, we get a zeta function Zp(T ) that can be shown to have
the form

Zp(T ) =
P (T )

(1− T )(1− pT )
for some polynomial P (T ) ∈ Z[T ] of degree 2 (if p does not divide the discriminant
of E). In fact, if p - E we have P (T ) = 1− apt + pt2, where ap = p + 1−#E(Fp).

Put Lp(s) = 1/P (p−s) and define the L-function

L(s,E) =
∏
p

Lp(s).

Hasse conjectured that this L-function can be extended analytically to the whole
complex plane; moreover, there exists an N ∈ N such that

Λ(s,E) = Ns/2(2π)−sΓ(s)L(s,E)

satisfies the functional equation Λ(s − 2, E) = ±Λ(s,E) for some choice of signs.
For curves with complex multiplication, this was proved by Deuring; the general
conjecture is a consequence of the now proved Taniyama-Shimura conjecture.

6. Birch–Swinnerton-Dyer

6.1. Birch and Swinnerton-Dyer for Elliptic Curves. The conjecture of Birch
and Swinnerton-Dyer for elliptic curves predicts that L(s,E) has a zero of order r
at s = 1, where r is the rank of the Mordell-Weil group. More exactly, it is believed
that

lim
s→1

(s− 1)rL(s;E) =
Ω ·#X(E/Q) ·R(E/Q) ·

∏
cp

(#E(Q)tors)2
,

where r is the Mordell-Weil rank of E(Q), Ω = c∞ the real period, X(E/Q) the
Tate-Shafarevich group, R(E/Q) the regulator of E (some matrix whose entries
are canonical heights of basis elements of the free part of E(Q)), cp the Tamagawa
number for the prime p (trivial for all primes not dividing the discriminant), and
E(Q)tors the torsion group of E.

6.2. Birch and Swinnerton-Dyer for Conics. We now want to interpret Dirich-
let’s class number formula in a similar way. Let k = Q(

√
∆ ) denote the quadratic

number field associated to the Pell conic C : X2 −∆Y 2 = 4. Then we conjecture
that there is a cohomological definition of the Tate-Shafarevich group X(C) whose
2-torsion coincides with the group X2(C) defined above, and that we have

X(C) ' Cl+(k)2.
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If we (preliminarily) define the Tamagawa numbers by

cp =

{
2 if p | ∆,

1 otherwise,

then Gauss’s genus theory implies that∏
cp = 2(Cl+(k) : Cl+(k)2).

Thus if we put Ω = 1
2 , then Ω ·#X(C) ·

∏
cp = h+ equals the class number of

k in the strict sense, hence is equal to 2u · h, where u = 1 if Nε = +1, and u = 0
otherwise.

If ∆ > 0, let η > 1 denote a generator of the free part of C(Z); then the regulator
of C equals ĥ(η) = log η. Now we find R(C) = 21−uR, hence Ω·#X(C)·R(C)·

∏
cp =

h+ log η = 2hR; this also holds for ∆ < 0 if we put R = 1.
Finally, C(Z)tors is the group of roots of unity contained in k, and we find

2hR

w
=

Ω ·#X(C) ·R(C) ·
∏

cp

#C(Z)tors

in (almost) perfect analogy to the Birch–Swinnerton-Dyer conjecture for elliptic
curves.

In fact, the analogy would be even closer if we would replace #C(Z)tors by
(#C(Z)tors)2 and adjust the formulas for c2 and c3 for the two Pell conics with
nontrivial torsion; this would also allow us to put Ω = 1.

7. Summary

The analogy between Pell conics and elliptic curves is summarized in the follow-
ing table:

GL1 Pell conics elliptic curves
group structure on affine line affine plane projective plane
defined over rings rings fields
group elements S-units S-integral points rational points
group structure Z/2⊕ Z#S C(ZS)tors ⊕ Zr E(Q)tors ⊕ Zr

associativity clear Pascal’s Theorem Bezout’s Theorem
factorization alg. p− 1 p± 1 ECM
primality tests Lucas-Proth Lucas-Lehmer ECPP
X 1 Cl+(k)2 ?
L-series Z quadratic field modular form

Moreover, cyclotomic fields are for Pell conics what modular curves are for elliptic
curves, and cyclotomic units correspond to Heegner points. The analog of Heegner’s
Lemma (if a curve of genus 1 of the form Y 2 = f4(X), where f4 is a quartic
polynomial with rational coefficients, has a K-rational point for some number field
K of odd degree, then the curve has a rational point; cf. [4]) is due to Nagell [9],
who proved the same result with f4 replaced by a quadratic polynomial f2.
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8. Questions

Although the arithmetic of conics is generally regarded as being almost trivial,
there are a lot of questions that are still open. The main problem is a good definition
of the Tamagawa numbers in the case of conics, a cohomological description of the
Selmer and Tate-Shafarevich groups, and the proof of X(C) ' Cl+(k)2.

The next problem is the analytic construction of generators of C(ZS) if S 6= ∅.
This suggests looking at the Stark conjectures, which predict that we can construct
certain units (actually S-units) in number fields. It seems, however, that we cannot
hope to find “independent” elements (see [13]).

On a simpler level there’s the question whether iterated 2-descents on Pell conics
provide an algorithm for computing the fundamental unit that is faster than current
methods. And how does 3-descent on Pell conics work?

We can also think of generalizing the approach described here: the groups GL1

and the Pell conics are special norm tori in the theory of algebraic groups, and
there’s the question of how much of the above carries over to the more general
situation. The norm-1 tori associated to pure cubic fields can be described geomet-
rically as cubic surfaces S; do the groups of integral points on S admit a geometric
group law? It is known that the groups of rational points on cubic surfaces coming
from norm forms satisfy the Hasse principle; is there a connection between the 3-
class groups of these fields and the Tate-Shafarevich groups on S defined as above
as the obstruction to lifting the Hasse principle from rational to integral points?

On the elliptic curve side, there are a few questions suggested by the analogy
worked out in this article. For example, is there a natural group whose order
equals #X(E) ·

∏
cp? Recall that exp(ĥ(P )) is algebraic for rational points on

Pell conics; are there meromorphic functions F such that F (ĥ(P )) is algebraic for
rational points P on elliptic curves, at least for curves with complex multiplication?
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IDENTIFYING CONGRUENCE SUBGROUPS

OF THE MODULAR GROUP
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(Communicated by Ronald M. Solomon)

Abstract. We exhibit a simple test (Theorem 2.4) for determining if a given
(classical) modular subgroup is a congruence subgroup, and give a detailed
description of its implementation (Theorem 3.1). In an appendix, we also

describe a more “invariant” and arithmetic congruence test.

1. Notation

We describe (conjugacy classes of) subgroups Γ ⊂ PSL2(Z) in terms of per-
mutation representations of PSL2(Z), following Millington [11, 12] and Atkin and
Swinnerton-Dyer [1].

We recall that a conjugacy class of subgroups of PSL2(Z) is equivalent to a
transitive permutation represention of PSL2(Z). Such a representation can be
defined by transitive permutations E and V which satisfy the relations

1 = E2 = V 3.(1.1)

The relations (1.1) are fulfilled by

E =

(
0 1
−1 0

)
, V =

(
1 1
−1 0

)
.(1.2)

Alternately, such a representation can be defined by transitive permutations
L and R which satisfy

1 = (LR−1L)2 = (R−1L)3,(1.3)

with the relations being fulfilled by

L =

(
1 1
0 1

)
, R =

(
1 0
1 1

)
.(1.4)

One can also use permuations E and L such that

1 = E2 = (L−1E)3,(1.5)

with E and L corresponding to the indicated matrices in (1.2) and (1.4), respec-
tively.
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The various notations can be translated using the following conversion table:

E = LR−1L, V = R−1L,(1.6)

L = EV −1, R = EV −2,(1.7)

R = E−1L−1E.(1.8)

Example 1.1. The permutations

E = (1 2)(3 4)(5 6)(7 8)(9 10),

V = (1 3 5)(2 7 4)(6 8 9),
(1.9)

or, alternately,

L = (1 4)(2 5 9 10 8)(3 7 6),

R = (1 7 9 10 6)(2 3)(4 5 8),
(1.10)

describe a conjugacy class of subgroups of index 10 in PSL2(Z).

Remark 1.2. Note that any concrete method of specifying a modular subgroup can
easily be converted to permutation form. For instance, one way in which a modular
subgroup Γ might be specified is by a list of generators. Such a list can be converted
into permutations as follows: First, use the Euclidean algorithm to express each
generator matrix as a product of L’s and R’s, where L and R are the elements in
(1.4). Then enumerate the cosets of Γ in terms of these generators and presentation
(1.3). This coset enumeration is easily converted into appropriate permutations L
and R. Similarly, any reasonable membership test for Γ can be used to enumerate
the cosets of Γ, with the same results as before.

2. Congruence subgroups and the level

We recall the following definitions.

Definition 2.1. Γ(N) is defined to be the group

{γ ∈ PSL2(Z) | γ ≡ ±I (mod N)}.(2.1)

Γ(N) is the kernel of the natural projection from PSL2(Z) to SL2(Z/N)/{±I}.
We say that a modular subgroup Γ is a congruence subgroup if Γ contains Γ(N) for
some integer N . Otherwise, we say Γ is a non-congruence subgroup.

An important invariant of (conjugacy classes of) modular subgroups is the fol-
lowing.

Definition 2.2. The level of a modular subgroup Γ, as specified by permutations
L and R, is defined to be the order of L (or the order of R, since L is conjugate to
R−1).

We need the following result, sometimes known as Wohlfahrt’s Theorem (Wohl-
fahrt [13]).

Theorem 2.3. Let N be the level of a modular subgroup Γ. Γ is a congruence
subgroup if and only if it contains Γ(N).

Proof. This amounts to proving that, for congruence subgroups, our definition of
the level is the same as the classical definition of the level. See Wohlfahrt [13].
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Theorem 2.4. Let Γ be a modular subgroup of level N , and let

〈L, R |r1, r2, . . . 〉(2.2)

be a presentation for SL2(Z/N)/{±I} which is compatible with (1.4). Then Γ is
a congruence subgroup if and only if the representation of PSL2(Z) induced by Γ
respects the relations {ri}.

Proof. From Theorem 2.3, we only need to check if Γ contains Γ(N). Now, since
Γ(N) is normal in PSL2(Z), Γ contains Γ(N) if and only if the normal kernel
of Γ contains Γ(N). However, the normal kernel of Γ is exactly the kernel of the
representation induced by Γ, and since the relations {ri} generate Γ(N) as their
normal closure, the theorem follows.

Compare Magnus [9, Ch. III], Britto [4], Wohlfahrt [13], and Larcher [8]. Lang,
Lim, and Tan [7] have also developed a congruence test; see the related paper Chan,
Lang, Lim, and Tan [5].

Example 2.5. Suppose Γ is the conjugacy class of subgroups specified by (1.10).
Since L has order 30, we need to use a presentation for SL2(Z/30)/{±I}. We find
that SL2(Z/30)/{±I} has a presentation with defining relations

1 = L30,(2.3)

1 = [L2, R15] = [L3, R10] = [L5, R6](2.4)

in addition to the relations in (1.3). (The commutator [x, y] is defined to be
x−1y−1xy, so 1 = [x, y] means “x commutes with y”.) Only the commutator
relations (2.4) need to be checked. However,

L2 = (2 9 8 5 10)(3 6 7),(2.5)

which does not commute with

R15 = (2 3),(2.6)

so Γ is a non-congruence subgroup. (It is worth mentioning that Larcher’s results
also imply that Γ is non-congruence, since L does not contain a 30-cycle.)

Remark 2.6. The results in this section extend essentially verbatim to the Bianchi
groups SL2(Od), where Od is the ring of algebraic integers of an imaginary quadratic
field Q

[√
−d
]

with class number 1. (See Fine [6] for more on the Bianchi groups.)
However, for practical use, one needs a uniform presentation of SL2(Od) /A for A

any ideal of Od.

3. Implementation

To assure the reader that the procedure described by Theorem 2.4 is practical,
we provide the following detailed algorithm. Suppose we are given a subgroup Γ of
finite index in PSL2(Z).

1. Describe Γ in terms of permutations L and R. If necessary, use conversion
(1.7), conversion (1.8), or another similar conversion. (See also Remark 1.2.)

2. Let N be the order of L, and let N = em, where e is a power of 2 and m is
odd.

3. We have three cases:
(a) N is odd: Γ is a congruence subgroup if and only if the relation

1 = (R2L−
1
2 )3(A)
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is satisfied, where 1
2 is the multiplicative inverse of 2 mod N .

(b) N is a power of 2: Let S = L20R
1
5L−4R−1, where 1

5 is the multiplicative
inverse of 5 mod N . Γ is a congruence subgroup if and only if the relations

(LR−1L)−1S(LR−1L) = S−1,

S−1RS = R25,

1 = (SR5LR−1L)3

(B)

are satisfied.
(c) Both e and m are greater than 1:

(i) Let 1
2 be the multiplicative inverse of 2 mod m, and let 1

5 be the multiplicative
inverse of 5 mod e.

(ii) Let c be the unique integer mod N such that c ≡ 0 (mod e) and c ≡ 1
(mod m), and let d be the unique integer mod N such that d ≡ 0 (mod m)
and d ≡ 1 (mod e).

(iii) Let a = Lc, b = Rc, l = Ld, r = Rd, and let s = l20r
1
5 l−4r−1.

(iv) Γ is a congruence subgroup if and only if the relations

1 = [a, r],

1 = (ab−1a)4,

(ab−1a)2 = (b−1a)3,

(ab−1a)2 = (b2a−
1
2 )3,

(lr−1l)−1s(lr−1l) = s−1,

s−1rs = r25,

(lr−1l)2 = (sr5lr−1l)3

(C)

are satisfied.

Theorem 3.1. The above procedure determines if Γ is a congruence subgroup.

Before proving Theorem 3.1, we need an algebraic trick (Lemma 3.2) and some
known results (Lemma 3.3, due to Behr and Mennicke [2]; and Lemma 3.4, due to
Mennicke [10]).

Lemma 3.2 (Braid trick). Let x and y be elements which generate a group G and
satisfy the relation

(xyx)2 = (yx)3.(3.1)

Then the element (xyx)2 = (yx)3 is central in G. Furthermore,

xyx = yxy(3.2)

and

(xyx)−1x(xyx) = y.(3.3)

We call this the “braid trick” because (3.2) is the defining relation for the 3-string
braid group.

Proof. The elements X = xyx and Y = yx also generate G, and the element
Z = (xyx)2 = (yx)3 = X2 = Y 3 commutes with both X and Y , so Z is central.
(3.2) and (3.3) follow from cancellation in xyxxyx = yxyxyx.
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Lemma 3.3. Let m be an odd integer, and let 1
2 be the multiplicative inverse of 2

mod m. SL2(Z/m) is isomorphic to

G =
〈
a, b

∣∣∣
1 = am,(3.4)

1 = (ab−1a)4,(3.5)

(ab−1a)2 = (b−1a)3,(3.6)

(ab−1a)2 = (b2a−
1
2 )3
〉
.(3.7)

Relations (3.4)–(3.7) are fulfilled by a =

(
1 1
0 1

)
and b =

(
1 0
1 1

)
in SL2(Z/m).

Proof. G is equivalent to Behr and Mennicke’s presentation [2, (2.12)] by the fol-
lowing Tietze transformations. Add generators A = b and B = ab−1a. Applying
the braid trick to (3.6), we get that B2 is central, and from (3.2), we also get that

BA = b−1a.(3.8)

(3.8) implies that a = ABA, which means that we can eliminate a and b.
Using (3.3), (3.8), and the centrality of B2, we see that (3.4)–(3.6) become

1 = Am = B4,(3.9)

B2 = (AB)3,(3.10)

so it remains to convert (3.7) to Behr and Mennicke’s form. However, applying
(3.3), we have

B2 = (b2a−
1
2 )3 = (A2B−1A

1
2B)3,(3.11)

so, using 1 = B8 and the centrality of B2,

1 = (A2B−1A
1
2B)3B6 = (A2BA

1
2B)3.(3.12)

Lemma 3.4. Let e = 2n, let 1
5 be the multiplicative inverse of 5 mod e, and let

s = l20r
1
5 l−4r−1. SL2(Z/e) is isomorphic to

G =
〈
l, r
∣∣∣
1 = le,(3.13)

1 = (lr−1l)4,(3.14)

(lr−1l)2 = (r−1l)3,(3.15)

(lr−1l)−1s(lr−1l) = s−1,(3.16)

s−1rs = r25,(3.17)

(lr−1l)2 = (sr5lr−1l)3
〉
.(3.18)

Relations (3.13)–(3.18) are fulfilled by l =

(
1 1
0 1

)
, r =

(
1 0
1 1

)
, and s =

(
5 0
0 1

5

)
in SL2(Z/e).
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Proof. As the reader may verify, the relations (3.13)–(3.18) and s = l20r
1
5 l−4r−1

are satisfied in SL2(Z/e), so it suffices to show that G is a homomorphic image of
Mennicke’s presentation [10, p. 210]. Add generators A = r, B = lr−1l, and T = s.
Applying the braid trick to (3.15), we get that B2 is central, BA = r−1l, and l is
conjugate to A−1. As in the proof of the previous lemma, we can then eliminate
generators l and r. Then (3.13), (3.14), (3.15), (3.16), (3.17), and (3.18) become
Mennicke’s relations (X), (Y), (P), (Z), (Q), and (R), respectively.

For Lemma 3.5, we consider the following relations:

1 = LN ,(3.19)

1 = [a, r],(3.20)

1 = [b, l],(3.21)

1 = (ab−1a)4,(3.22)

(ab−1a)2 = (b−1a)3,(3.23)

(ab−1a)2 = (b2a−
1
2 )3,(3.24)

1 = (lr−1l)4,(3.25)

(lr−1l)2 = (r−1l)3,(3.26)

(lr−1l)−1s(lr−1l) = s−1,(3.27)

s−1rs = r25,(3.28)

(lr−1l)2 = (sr5lr−1l)3.(3.29)

All notation is as described in (2) and (3c)(i–iii) of the algorithm. Note that 1 = LN

implies that L = al and R = br.

Lemma 3.5. SL2(Z/N) has a presentation with generators L and R, and defining

relations (3.19)–(3.29). The relations are fulfilled by L =

(
1 1
0 1

)
and R =

(
1 0
1 1

)
in SL2(Z/N).

Proof. The Chinese Remainder Theorem implies that

SL2(Z/N) ∼= SL2(Z/m)× SL2(Z/e) .(3.30)

It also follows from the Chinese Remainder Theorem that, if L =

(
1 1
0 1

)
and R =(

1 0
1 1

)
in SL2(Z/N), the SL2(Z/m) factor is precisely 〈a, b〉 and the SL2(Z/e)

factor is precisely 〈l, r〉. Therefore, the above relations are satisfied in SL2(Z/N).
On the other hand, since (3.19) implies (3.4) and (3.13), comparison with Lem-

mas 3.3 and 3.4 shows that the above presentation is the direct product of SL2(Z/m)
and SL2(Z/e). The lemma follows.

Proof of Theorem 3.1. After steps 1 and 2 of the procedure, we know that the
relations

1 = LN ,(3.31)

1 = (LR−1L)2,(3.32)

1 = (R−1L)3(3.33)
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must be satisfied. From Theorem 2.4, we see that if (3.31)–(3.33) and (A) (resp.
(B), (C)) are defining relations for SL2(Z/N)/{±I} when N is odd (resp. N is a
power of 2, and e and m are greater than 1), then Theorem 3.1 follows. Comparing
(A) and Lemma 3.3, with a = L and b = R, and comparing (B) and Lemma 3.4,
with l = L and r = R, the first two cases follow easily, so it remains to check the
third.

Comparing (C) and (3.19)–(3.29), we see that it is enough to show that given
(3.31)–(3.33) and (3.19)–(3.29), the relations (3.21), (3.25), and (3.26) are redun-
dant. First, (3.31), (3.32), (3.20), and (3.21) give us

1 = (LR−1L)4

= (alr−1b−1al)4

= (ab−1a)4(lr−1l)4,

(3.34)

which means that (3.22) implies (3.25). Similarly, (3.31), (3.32), (3.33), (3.20), and
(3.21) imply

(LR−1L)2 = (R−1L)3,

(ab−1a)2(lr−1l)2 = (b−1a)3(r−1l)3,
(3.35)

which means that (3.23) implies (3.26). Finally, since (3.32), (3.33), and the braid
trick (3.3) imply that L is conjugate to R−1, we can eliminate (3.21), since it is
implied by (3.20).

For hand calculations, and for further study, we note the following relations
which occur in SL2(Z/N):

Z = (LR−1L)2 = (R−1L)3, 1 = Z2,(SL2)

1 = LN = RN ,(level)

1 = [La, Rb],

(ab ≡ 0 (mod N))

(LaRb)3 = Z,

(ab ≡ −1 (mod N))

(LaRb)2 = Z.

(ab ≡ −2 (mod N))

It has been verified by coset enumeration that the relations (SL2), (level), and
(ab ≡ 0 (mod N)) are defining relations when N | 360. This means that if the
level N divides 360, the congruence test reduces to checking that the relations
(ab ≡ 0 (mod N)) are satisfied.

Acknowledgements

The author would like to thank J. H. Conway and the referee for many helpful
comments and suggestions.

Appendix A. An arithmetic congruence test

In this appendix, we present an arithmetic and “invariant” congruence test which

uses the Ihara modular group SL2

(
Z
[

1
p

])
.
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We begin by quoting the following result (Theorem A.1) of J. Mennicke [10].
(Note that Mennicke’s Schur multiplier calculation and subsequent argument re-
quire the repairs described in F.R. Beyl [3, §5], but the main result still holds.)
Let N be an integer, let p be a prime not dividing N , let RN be the kernel

in SL2

(
Z
[

1
p

])
resulting from reduction mod N , and let QN be the normal clo-

sure of LN in SL2

(
Z
[

1
p

])
.

Theorem A.1. RN = QN .

Let Γ be a modular subgroup of level N and index m in SL2(Z). Consider the
commutative diagram in Figure A.1.

SL2(Z[   ])–
p

SL2(Z/N)

SL2(Z)

Sm

f1 f2

r

r

i

ρ

Figure A.1. Commutative diagram for Theorem A.2

Here, Sm is the symmetric group on m objects (the cosets of Γ in SL2(Z)), r is
reduction mod N , i is inclusion, and ρ is the permutation representation of SL2(Z)
induced by Γ. Note that f2 exists if and only if Γ is a congruence subgroup, and
that such an f2 is uniquely determined.

The setup in Figure A.1 provides us with an invariant congruence test.

Theorem A.2. In the notation of Figure A.1, a map f1 exists if and only if f2

exists. In other words, Γ is congruence if and only if ρ can be factored through

inclusion in SL2

(
Z
[

1
p

])
.

Proof. If f2 exists, let f1 = f2r. Conversely, if f1 exists, since LN is in the kernel
of ρ, LN must be in the kernel of f1, so in fact, f1 is well defined on

SL2

(
Z
[

1
p

])/
QN = SL2

(
Z
[

1
p

])/
RN ∼= SL2(Z/N) ,(A.1)

which means that f1 defines an appropriate map f2.

Corollary A.3. In Figure A.1, f1 is determined uniquely if it exists.

One curious feature of Theorem A.2 is that if we know a given family of modular
subgroups all have levels relatively prime to p, then we can handle all of them in
a uniform manner. This is the principle behind Behr and Mennicke’s presentation
of SL2(Z/N) for N odd, as these cases can be handled in SL2

(
Z
[

1
2

])
.

We also note that if we fix the level N , then we can choose any p not dividing
N to use in Theorem A.2. This leads to the following idea: For a given family of
modular subgroups of level N , it seems plausible that one might be able to reduce
the extensibility of ρ to the question of whether there exists a p which satisfies
certain congruences mod N . Dirichlet’s theorem might then be used to find a p
which satisfies those congruences.
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Preface

These are the notes of a cours de DEA avancé held at Bordeaux in spring
1998. The aim of the course was to introduce the notion of height, one of
the basic ingredients in Diophantine geometry, in an elementary and easy
to understand manner, with the emphasis on results, open problems and
‘highlights’ instead of abstract theory.

Accordingly we start in Part 1 with the classical Lehmer conjecture and
discuss the important theorems around and towards this conjecture. In par-
ticular, we discuss Langevin’s theorem and Zhang’s theorem. When I pre-
pared the course, it came to my mind that the theorem of Langevin, the
more recent theorem of Zhang and the long-known result of Schintzel on
the absolute bound for heights of real-algebraic numbers seem to have some
deep analogy. In the present notes I tried to work this out, and in the end I
managed (at least) to give a sort of unified proof for these results.

In Part 2 we discuss, after a generalisation of Zhang’s theorem to plane
affine algebraic curves, heights on elliptic curves. We discuss in an explicit
manner the method of infinite descent (and Mordell’s theorem), and the local
decomposition of the canonical height, i.e. the “local Green’s functions” on
an elliptic curve. In the Appendix (which is actually an examination given
to the students at the end of the course) the reader finds a sketch of how to
compute explicitly the canonical height function on an explicitly given cubic
algebraic curve.

A logical step would have been a third part treating Green’s functions an
algebraic curves of arbitrary genus, and, in particular, to have very concrete
examples, a part treating Green’s functions on modular curves.

These notes are still preliminary: a section on elliptic curves is missing
(section 2.4), more recent considerations on the relation of Mahler measures
and special values of certain L-functions and Mahler measures as entropy of
certain “algebraic dynamical systems” are missing. Also the list of references
is not complete, and the Appendix is in French. Maybe we shall come back
to this (and also the Part 3) at another occasion.

We finally note that parts of Part 1 are based on a course given by the au-
thor in the Max-Planck-Institute für Mathematik in spring 1993. Criticism,
comments and pointers to typos are welcome.

Talence, March 8, 1999
Nils-Peter Skoruppa
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Part 1

Heights of Algebraic Numbers

It is natural to try to associate to an algebraic solution of a Diophantine
equation a measure of complexity. This is natural in view of the problem of
computing and storing such a number, but it has also a theoretical signifi-
cance if the measure of complexity can be chosen such that the number of
measured objects in question below a given bound is always finite.

In this first part we shall consider the problem of finding such a measure
for algebraic numbers. This will lead to the notion of height for numbers.
We shall discuss various properties of the height function, and in particular
we shall discuss the Lehmer conjecture.

1.1 The height of a rational number

Assume that α = x
y

is a rational number, say gcd(x, y) = 1. We define its
height by

H(α) := max(|x|, |y|).
This clearly measures the complexity of α in the sense of how many infor-
mation do we need to describe α. Indeed, log H(α) is roughly the number of
digits needed to write down the numerator or denominator of α. Moreover
it is clear that the set

{α ∈ Q : H(α) < B}
is finite for any real B.

There is one important property that one can already read off in this
more or less trivial situation. The height function possesses a decomposition
into local factors. We explain this in detail.

Recall that to each (rational) prime p we can associate the valuation | · |p
of Q defined by

|α|p = p−n,

1
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where pn is the exact power of p in the prime decomposition of α. A valuation
of a field K is a function v : K∗ → R≥0 such that v(α) = 0 if and only if
α = 0 and satisfying

v(αβ) = v(α)v(β), v(α + β) ≤ v(α) + v(β)

for all α, β ∈ K∗. Two valuations v and w are called equivalent if there is
a real number s > 0 such that v(α) = w(α)s for all α ∈ K. Any valuation
of Q is either equivalent to a | · |p or to the usual absolute value on Q which
we denote by | · |∞ [Neuk], p. 124. The latter writing suggest that the set of
primes of Q should be completed by a “prime at infinity”.

Theorem 1.1. For each rational number α 6= 0 one has

H(α) = max(1, |α|∞)
∏

p

max(1, |α|p).

Proof. As before let x and y denote the numerator and denominator of α.
The contribution from the pth factor on the right equals p−n, where pn is
the exact divisor of α, if n is negative, and it equals 1 otherwise. Thus the
product over the primes equals |y|. The factor before the product is 1 if
|x| < |y|, and it is |x|/|y| otherwise. This proves the formula.

In view of the theorem it is reasonable to call the function

Hp(α) := max(1, |α|p)

the local height of α at the prime p. The decomposition formula of H can
then be rewritten in a more compact form as

H =
∏

p

Hp,

where this time p runs through the finite primes and p = ∞.

1.2 The Mahler measure of a polynomial

An algebraic number α is, up to “equivalence”, described by its unique nor-
malised minimal polynomial f . By the last we understand the minimal poly-
nomial whose coefficients are in Z and are relatively prime. Discussing the
complexity of α is thus equivalent to discussing the complexity of f .

To measure the complexity of a polynomial

f = anX
n + an−1x

n−1 + · · · + a0 ∈ Z[x]
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we may consider the number

||f ||1 :=
n∑

j=0

|aj|.

This is in essence the number of digits needed to write down f . However,
one might find good arguments to consider

|f ||∞ = max
j

|aj|

or

|f ||2 :=
√

a2
d + · · · + a2

0

as complexity measure.
Obviously we would prefer a unique, canonical one instead of many. Now

the above three examples all come from a norm on the real vector space R[x]n
of real polynomials of degree less or equal to n. All such norms are equivalent,
i.e. if || · || is any norm on R[x]n, then there exist constants A,B > 0 such
that

A ||f ||∞ ≤ ||f || ≤ B ||f ||∞
for all f (exercise). Suppose we could construct for any f in a canonical
way a sequence of polynomials fk of degree less or equal to n such that, for
any norm |‖ · ||, the measures ||fk||

1

k are roughly ||f ||, and such that ||fk||
1

k

converges. By the last property the limit would not depend on the special
choice of the norm as follows easily from the equivalence inequalities (see the
proof of the next lemma for details). The limit can thus be considered as a
good candidate for a canonical measure of complexity.

Such a sequence fk can indeed be constructed. Let, for the following, f
denote a polynomial with complex coefficients, say

f(x) = anx
n · · · + a0 = an

n∏

j=1

(x − αj).

We define

fk(x) = ak
n

n∏

j=1

(x − αk
j ) = (−1)k(n+1)

∏

ζn=1

f(x
1

k ζ).

Here the product is over all kth roots of unity. One might think of ||fk||1/k

as being obtained by a sort of averaging over the roots of f . Note that
fk has rational coefficients if f has rational coefficients (since fk is invariant
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under the Galois group of the decomposition field of f), which are, moreover,
integral if those of f are integral.

We define the Mahler measure of f by

µ(f) = |an|
n∏

j=1

max(1, |αj|).

Thus µ(f) is, up to the number |an| the product of the roots of f outside
the unit circle, where multiple roots are repeated. We shall need a formula
expressing µ(f) without making explicit reference to the zeroes of f .

Theorem 1.2. (Jensen’s formula) For any f ∈ C[X], f 6= 0 one has

log µ(f) =

∫ 2π

0

log |f(eit)| dt.

Proof. Since the logarithm is additive It suffices to consider the case f(z) =
z − α. If |α| > 1 then log |f(z)| is a harmonic function in a neighbourhood
of the unit circle, and hence the integral equals

log |f(0)| = log |α|.

If |α| < 1 then g(z) = 1 − αz has no zeroes in the unit circle, and log |g(x)|
is a harmonic function in a neighbourhood of the unit circle. Moreover,
|g(z)| = |f(z)| on the unit circle. The integral in question thus equals the
same integral but with f replaced by g, i.e. it equals

log |g(0)| = 0.

Finally, if |α| = 1, then

1

2π

∫ 2π

0

log |eit − α| dt =
1

2π

∫ 2π

0

log |eit − 1| dt = 0

(exercise).

The actual formula known as Jensen’s formula in complex analysis applies
to a slightly more general functions than only to polynomials as stated in
the theorem [Ahlf], p. 205.

We need a second property of the mahler measure.

Theorem 1.3. (Norm inequality) For all 0 ≤ j < n one has

|aj| ≤
(

n

j

)
µ(f).
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Proof. This is an immediate consequence of

aj = (−1)n−jan

∑

{j1,...,jn−j}⊂{1,...,n}
αj1 · · ·αjn−j

and the very definition of the Mahler measure.

We are now able to explain why the Mahler measure is the canonical
complexity measure we are looking for.

Theorem 1.4. Let || · || be a norm on the real vector space C[x]n. Then, for
any polynomial f ∈ C[x]n, one has

lim
k→∞

||fk||1/k = µ(f).

Proof. From the equivalence inequality we obtain

A1/k ||fk||k∞ ≤ ||fk||1/k ≤ B1/k ||fk||1/k
∞

Thus, if the theorem holds true for the || · ||∞-norm, then it holds true for all
norms.

For the || · ||∞-norm we have

µ(f) ≤ (n + 1) ||f ||∞ ≤ 2n(n + 1) µ(f).

The first inequality follows from Jensen’s formula for µ(f) on using

|f(x)| ≤ (n + 1) max |aj|

for |x| = 1. The second one is an easy consequence of the norm inequality.
Now by the very definition of µ(f) one has

µ(f) = µ(fk)
1/k.

Combined with the above inequalities this gives

µ(f) ≤
[
(n + 1) ||fk||∞

]1/k ≤ [2n(n + 1)]1/kµ(f).

Letting k tend to infinity we recognise the asserted formula.

We note that there are other possibilities for defining the complexity
of a polynomial f over Z. One might consider for example |f(1)|, i.e. the

absolute value of the sum of the coefficients of f . Again |fk(1)| 1

k → µ(f):
indeed 1

k
log |fk(1)| is just the n−th Riemann sum approximating the integral

defining log µ(f).
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In the computer algebra system Pari [Pari] one finds the function “polred”
which finds for a given unitary integral f of degree n a new polynomial g
which defines the same number field but which is (probably) minimal with
respect to the function

l(f) =
√

αd
1 + · · ·α2

n

[CoDi]. It is easy to verify that Again l(fk)
1

k tends to µ(f) for any f .
We note two simple but remarkable properties of the Mahler measure.

Theorem 1.5. Let f and g be any complex polynomials. Then

µ(fg) = µ(f)µ(g), µ(f ∗) = µ(f).

Here f ∗ is the reciprocal polynomial of f , i.e. f ∗(x) = xdeg ff(1/x).

Proof. The first identity is evident from the definition of µ. The second one
is equivalent to

|a0|
|an|

=
n∏

j=1

|αj|.

By the norm inequality we see that, for any degree n and any bound B,
there are only finitely many polynomials f ∈ Z[x]n such that µ(f) ≤ B. In
particular, for any real A the number

inf{µ(f) : f ∈ Z[x]n, µ(f) > A}
is strictly greater 0 and is attained by a finite number of f ∈ Z[x]n. Obviously
the Mahler measure of an integral polynomial is always greater or equal to
1. Thus it is natural to ask first of all for those polynomials with Mahler
measure 1. This question is answered by a classical theorem.

Theorem 1.6. (Kronecker) Let f ∈ Z[X]. Then µ(f) = 1 if and only if all
roots of f are roots of unity or 0.

Proof. Assume that inZ[x] has degree n and Mahler measure 1. For the j-th

coefficient a
(k)
j of fk we have by the norm estimate and since µ(fk) = 1 the

estimate

|ak
j | ≤

(
n

j

)
.

Thus the set of all fk is actually finite. Hence, the set of all roots of all fn

is finite. In particular, if α is a root of f then the αn cannot be pairwise
different. Consequently αk = αl for some k > l, i.e. either α = 0 or else
αk−l = 1.

The inverse direction of the theorem is trivial.
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The theorem is usually cited in the form that an integral algebraic number
whose conjugates are less or equal to 1 is necessarily a root of unity. Note
that the statement in this form becomes false if one drops the integrality
assumption; counter example: 3+4i

5
.

In view of the preceding theorem one is naturally interested in the num-
bers

inf{µ(f) : f ∈ Z[X]n, µ(f) > 1}
and the polynomials realizing these Mahler measures. For a given degree n
these minimizing polynomials are easy to calculate. In fact, one simply lists
all polynomials f ∈ Z[x]n with, say, µ(f) ≤ 2. This list is not empty since
µ(x − 2) = 2, and it is contained in the finite set Sn of all integral f with

|aj| ≤ 2

(
d

j

)

by the norm inequality. Thus this list can be compiled by searching Sn.
However note that e.g. for n = 4 the set S4 comprises already

(4

(
4

0

)
+ 1)2(4

(
4

1

)
+ 1)2(4

(
4

2

)
+ 1) = 180625

elements. This can of course be cut down by some factor on using µ(f ∗) =
µ(f), ±µ(f(±x)) = µ(f) by rejecting all polynomials with leading and con-
stant term different from ±1. In Table 1.2 we listed the result of such a
computational research for degrees n ≤ 5.

n f µ(f) disc(f)
1 x − 2 2 2
2 x2 − x − 1 1.618 . . . 5
3 x3 − x + 1 1.324 . . . −23
4 x4 − x3 − 1 1.380 . . . −283
5 x5 − x4 + x3 − x + 1 1.349 . . . 17 · 97

Table 1.1: This table gives, for a given degree n ≤ 5, a polynomial f from the
set Tn whose Mahler measure is minimal. Here Tn is the set of all irreducible
polynomials in Z[x] of degree n with Mahler measure strictly greater than
1. The respective minimum is also attained by the polynomials ±f(±x) and
±xnf(±1/x), but by no other ones in Tn.

1933 Lehmer conjectured [Lehm] that even the number

µ1 := {µ(f) : f ∈ Z[X], µ(f) > 1}
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is strictly greater than one. He even conjectured that µ∞ is assumed by the
polynomial

fL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

Here

µ(fL) = 1.176 . . .

The conjecture is still unproven and Lehmer’s lower bound is still not beaten.
A huge amount of computations has been done [Boyd] giving evidence to
Lehmer’s conjecture.

1.3 Pisot and Salem numbers

In view of the Lehmer conjecture it is an amusing sport to find polynomials
f in Z[x] with minimal Mahler measure µ(f). A first naive approach is to
look at polynomials with small ||f ||∞ norm, say with coefficients equal to ±1.
Systematic searches in this direction have been done e.g. in [Boyd].

A more theoretic approach is to search for algebraic numbers who are
not “too far away” from roots of unity. Indeed, since the Mahler measure
is multiplicative and greater and equal to 1 it suffices to look at irreducible
polynomials f . Moreover, since µ(f) is greater than or equal to the constant
and the leading term of f , it suffices to look at polynomials where both are
equal to 1, i.e. at minimal polynomials f of algebraic units α. Now, one might
expect that the Mahler measure µ(f) is small if many of the conjugates of α
lie in the unit disk or on the unit circle.

An integral algebraic number α is called a Pisot number if α > 1 and all
its conjugates α′ satisfy |α′| < 1. It is called a Salem number if α > 1, if all
its conjugates α′ satisfy |α′| ≤ 1, but if at least one α′ satisfies |α′| = 1.

A Salem number satisfies actually a stricter condition.

Theorem 1.7. Let f be the normalized minimal polynomial of a Salem num-
ber τ . Then f ∗ = f .

Proof. Let τ ′ be a conjugate of τ on the unit circle. Then τ ′ is a root of f and
of f ∗. Thus f ∗ = ±f . If f ∗ = −f then f(1) = 0, which is impossible.

Hence, for a Salem number τ , the set of its conjugates is stable under
z 7→ 1/z. In particular, a Salem number is a unit, and moreover we have:

Corollary 1.7.1. An algebraic integer τ is a Salem number if and only if
1/τ is conjugate to τ and all other conjugates of τ have absolute value 1.
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There are infinitely many Pisot numbers. Indeed, if α is a Pisot number,
then so are the powers αn (n = 1, 2, . . . ), respectively. Moreover, the integers

are trivially Pisot numbers, and 1+
√

5
2

is one. It is easy to construct others
using the theorem of Rouché: If f and g are two polynomials such that
|f(z) − g(z)| < |g(z)| for all z on a circle C : |z| = R, then f and g have
the same number of zeroes (counting multiplicities) inside the circle |z| < R.
(Since the inequality implies that F := f/g satisfies |F (z) − 1| < 1 on C,
i.e. the curve F ◦ C is contained in the open disk |w − 1| < 1, and hence its
winding number

∫
C

d log F around 0 equals 0. But this winding number is
the number of zeros minus the number of poles of f/g contained in |z| < R.)

Theorem 1.8. Let f = xn + an−1x
n−1 + · · · + a0 ∈ Z[x] such that

1 + |an−2| + |an−3| + · · · + |a0| < |an−1|.

Then exactly one root α of f satisfies α| > 1, and all other roots α′ satisfy
|α′| < 1. In particular, α or −α is a Pisot number.

Proof. The inequality implies |f(z) − an−1z
n−1| < |an−1z

n−1| on the circle
|z| = 1. By Rouchés theorem f has thus n − 1 roots inside the unit disk
|z| < 1, and since |a0| ≥ 1, it has then exactly one root α outside the unit
circle. Since α is also a root of f we have α = α, hence α or −α is real and
greater that 1.

The smallest Pisot number has been determined by Siegel [Sieg]. It is the
real root of

fS = x3 − x − 1

(see section 1.8).
For Salem numbers there is a construction due to Salem, also based on

Rouché’s theorem.

Theorem 1.9. Let f be the minimal polynomial of a Pisot number of degree
greater or equal to 3, let κ = ±1, and set pn = xnf + κf ∗. Then there is an
n0 such that, for any n ≥ n0, one root of pn is a Salem number.

Proof. We leave it as an exercise to show that there is some n0 such that
for all sufficiently small ε > 0 and all n ≥ n0 one has |znp(z)/p∗(z)| > 1,
i,e. |pn(z) − znp(z)| < |znp(z)|, on the circle |z| = 1 + ε. Hence pn has
n + deg p = deg pn − 1 zeroes on |z| ≤ 1, and exactly one, say α, outside
the unit circle. Since p∗n = ±pn, the set of zeroes of pn is invariant under
z 7→ 1/z. Hence all zeros different from α and 1/α must lie on the unit circle
|z| = 1.



10 PART 1. HEIGHTS OF ALGEBRAIC NUMBERS

It is not yet known whether there is a smallest Salem number. A proof (or
disproof) of this fact would be an important contribution towards deciding
the Lehmer conjecture. The smallestknown Salem number can be obtained
by Salem’s construction:

z7fS − f ∗
S = x8(x3 − x − 1) − (−x3 − x2 + 1) = (x − 1)fL,

i.e. the unique root outside the unit circle of the polynomial fL of Lehmer
(see the end of last section), which has the so-far smallest known Mahler
measure.

1.4 The height of an algebraic number

Before discussing further the Mahler measure and the known results in the
direction of the Lehmer conjecture, we introduce its more number theoretic
counter part, namely, the height of algebraic numbers. For an algebraic
number α of degree n we define its “absolute” height by

H(α) = µ(f)1/n,

where f is the normalized minimal polynomial of α. The normalizing power
1/n is usually inserted to have a decomposition formula of the height func-
tion in local contributions which does depend on the field from which the
valuations are taken. We shall explain this more precisely in a moment (see
the proof of the next theorem).

If we set

f = an

n∏

j=1

(x − αj),

then

H(α) =
[
|ad|

d∏

j=1

max(1, |αj|)
]1/n

.

Note that this generalizes the height of a rational number defined in the first
section. Indeed, if α = r

s
with relative prime integers r, s, then f = sx − r,

and hence µ(f) = |s| if |r| ≤ |s|, and µ(f) = |r| otherwise.
As for the height of rational numbers one has a decomposition into lo-

cal height contributions. We recall first of all the relevant facts about the
valuations of an arbitrary number field K.

An equivalence class of valuations of K is called place of K or a prime of
K. We always use PK for the set of places of K, and we use P∞

K for the set
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of archimedean places of K, i.e. the set of equivalence classes of valuations
which extend the usual absolute value on Q (up to equivalence).

The representatives | · |v for the places v of K can be chosen in a unique
way that one has ∏

v∈P (K)∞

|α|v = |NK/Q(α)|

and ∏

v∈PK

|α|v = 1.

for all α ∈ K. We always assume that | · |v is normalized in this way.
One can describe the | · |v explicitly as follows. To each prime ideal p of

K one can associate a valuation by

|α|p = NK/Q(p)−k,

where pk is the exact divisor of α. This valuation satisfies the stronger
triangle inequality

|α + β|p ≤ min(|α|p, |β|p)
with equality if |α|p and |β|p are different.

Let σj : K 7→ R (1 ≤ j ≤ r) be the real embeddings of K, and let
σj, σj : K 7→ C (r < j ≤ r + s + 1) be the pairs of complex embeddings of
K. Then, for each j we have the valuation

|α|j = |σj(α)|ej ,

where the bars on the right indicate the usual absolute value in R or C, and
where ej = 1 if σj is real, and ej = 2 if σj is complex.

It is a known fact that for any place v of K the valuation | · · · |v equals
| · |p for some p if it is finite (i.e. non-archimedean), and that it equals | · |j
for some j otherwise.

We shall also need the following two facts. Let L be a finite extension of
K. Then the compatibility formula holds true, i.e.

|α|[L:K]
v =

∏

w∈PL

w|v

|α|w

for all α in the ground field K. Here w|v means that | · |w is an extension of
| · |v up to equivalence. Example: For 5 = (1 + 2i)(1− 2i) and K = Q(i) one
finds

|5|2(5) = |5|(1+2i)|5|(1−2i),
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where on the left we have the 5-adic valuation on Q, and on the right the
corresponding valuations on Q(i).

If L is galois over K then, for any place v of K the Galois group Gal(L/K)
acts transitively on the places w of L dividing v.

We are now in the position of proving the following decomposition formula
for the absolute height.

Theorem 1.10. Let K be a number field and α ∈ K. Then one has

H(α) =
∏

v∈PK

max(1, |α|v)1/[K:Q].

Proof. Note first of all that the value of the right hand side does not depend
on the field K. This is an immediate consequence of the compatibility formula
and the fact that |α|v < 1 if and only if |α|w < 1 for all w|v in any extension
L of K.

The formula is trivial in the case that K = Q(α) and α is integral. Indeed,
in this case |α|v ≤ 1 for all finite places v, and hence the [K : Q]th power
over the local contributions equals

r∏

j=1

max(1, |σj(α)|)
s∏

j=r+1

|max(1, σj(α)|2),

with σj having the same meaning as before. But this is exactly µ(f).
In the general case one can proceed as with the case of an integral α to

prove

H(α) = |an|1/[Q(α):Q]
∏

v∈P∞

K

max(1, |α|v)1/[K:Q],

where |an| is the leading term of the normalized minimal polynomial of f .
Hence it remains to relate |an|, the leading term of the normalized minimal
polynomial of f to the factors associated to the finite primes of K.

For this one uses Gauss’s lemma [Heck], p. 105:

contv(g1g2) = contv(g1) contv(g2).

for all g1, g2 ∈ K[X], and all finite places v of the number field K. Here

contv(amxm + · · · + a0) = max
j

|aj|v.

By enlarging K if necessary, we may assume that K is Galois, say with
Galois group G, and contains all roots of f . We can write f in the form

f = an

∏

σ∈G

(
x − σ(α)

)1/[K:Q(α)]
.
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Let p be a rational prime number. We then have

1 = contp(f)[K:Q(α)] = |an|[K:Q(α)]
p contp

( ∏

σ∈G

(x − σ(α))
)

= |an|[K:Q(α)]
p

∏

σ∈G

∏

v|p
contv(x − σ(α))1/[K:Q]

= |an|[K:Q(α)]
p

∏

v|p

∏

σ∈G

max(1, |σ(α)|v)1/[K:Q]

= |an|[K:Q(α)]
p

∏

v|p
max(1, |α|v)

Here the second identity follows from Gauss’s lemma, the third one from the
compatibility relation and Gauss lemma, and the last since G acts transitively
on the places of K dividing p. Thus we find

|an| =
∏

p finite

1

|an|p
=

∏

p finite

∏

v|p
max(1, |α|p)1/[K:Q(α)],

which implies the asserted formula.

Sometimes one defines for a number field K the relative height function
HK on K by by

HK(α) =
∏

v∈PK

max(1, |α|v).

In particular one has
HQ(α)(α) = µ(f)

, where f is the normalized minimal polynomial of α.
Since the Mahler measure and the height of algebraic numbers represent

essentially the same notion, one can easily deduce several properties of the
height from the Mahler measure.

For instance, for any degree d and any bound B there is only a finite
number of α ∈ Q of degree less or equal to d with H(α) ≤ B. Moreover

H(α) = H(1/α)

for any α 6= 0 (since ±f ∗ is the normalized minimal polynomial of 1/α if f is
the normalized minimal polynomial of α. Kronecker’s theorem states states
that, for any algebraic α one has H(α) = 1 if and only if α is a root of unity.

Finally, Lehmer’s conjecture is equivalent to the fact that for some con-
stant C > 1 one has

H(α) ≥ Cdeg α
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for all algebraic α. Note the degree deg α of α in this formula. Without this
degree such an inequality cannot be true. Counter example:

H(21/n) = 21/n 7→ 1.

1.5 Two easy Lehmer type theorems

In this section we prove a theorem of Schinzel from 1973 concerning an abso-
lute lower bound for the height of totally real algebraic numbers, and a more
recent one one of Zhang from 1992 about numbers simultaneously “close
to 0 and 1”. Both theorems admit surprisingly simple proofs ([HoSk] and
[Zagi]) which are quite similar though they were found independently 1 .
In this section we give the the proofs without any additional comment. A
reinterpretation and two possible generalizations will follow in the two next
sections.

Theorem 1.11. (Schinzel [Schi]) Let α 6= 0,±1 be a totally real algebraic
number. Then

H(α) ≥

√
1 +

√
5

2
= 1.2720 . . . ,

with equality if and only if α equals one of the four numbers ±1±
√

5
2

.

Note that a theorem like this cannot be true in general, i.e. there is no
absolute lower bound for the absolute height of all but a finite number of
algebraic numbers. Indeed, xp − a is irreducible for all square-free positive
integers a, and all rational primes p. Thus

H( p
√

a) = a1/p → 1.

Proof. (cf. [HoSk]) If, for x real, we set γ(x) = |x|1/2|x − 1/x|1/2
√

5, then we
have

max(1, |x|) ≥

√
1 +

√
5

2
γ(x),

with equality if and only if x = ±1±
√

5
2

. Indeed, since |x|γ(1/x) = γ(x), since
the same invariance property holds for the function max(1, |x|), and since
both sides of the desired inequality are invariant under x 7→ −x, it suffices

1The second proof differs slightly from the original version given in [Zagi]. When I
prepared this manuscript I noticed that Zagier’s proof could be presented in a form which
makes it look much more similar to the proof of Schinzel’s theorem in [HoSk].
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to prove it for 0 ≤ x ≤ 1. But in this interval maximum of γ(x) occurs for

x = −1+
√

5
2

with maximum value
√

−1+
√

5
2

.

On the other hand

|a|
∏

j

γ(αj) = |a|1/2−1/2
√

5|f(0)|1/2−1/2
√

5|f(1)f(−1)|1/2
√

5 ≥ 1

where f(x) = a
∏

(x−αj) is the minimal polynomial of α. The result is now
obvious.

Theorem 1.12. (Zhang [Zhan]) For all algebraic numbers α 6= 0, 1, 1±
√
−3

2
,

one has

H(α)H(1 − α) ≥

√
1 +

√
5

2

with equality if and only if α or 1 − α is a primitive 10th root of unity.

Proof. (Cf. [Zagi]) Here, for complex z, we set

γ(z) = |z|1/2|1 − z|1/2
( |z2 − z + 1|

|z2 − z|
)1/2

√
5

.

It is straight-forward, though cumbersome, to prove

max(1, |x|) max(1, |1 − x|) ≥

√
1 +

√
5

2
γ(x)

for all complex arguments, with equality if and only if x or 1−x equals e±πi/5

or e±3πi/5. With the same notations as in the theorem before we find

|a|
∏

j

γ(αj) = |f(0)f(1)|1/2−1/2
√

5|f(
1 +

√
−3

2
)f(

1 −
√
−3

2
)|1/2

√
5 ≥ 1,

which again implies the result.

1.6 Numbers with conjugates outside a given

set

The proofs of the two theorems of the preceding section have obviously very
much in common. The both use a function γ(z) with remarkable symmetry to
bound max(1, |z|) to below. We formalize the construction of this bounding
function.
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Fix an arbitrary polynomial p 6= 0 with integral coefficients and a real
number s > 0, and set

γ(z) := |z|1/2|p(z)p(1/z)|s.

Then
|z|γ(1/z) = γ(z).

Note that we also have

|z|max(1, |1/z|) = max(1, zx|).

Moreover, γ(z) and max(1, |z|) are both invariant under z 7→ z. Thus if

max(1, |z|) ≥ γ(z)

for z in some subset E of C, then we can assume without loss of generality
that E is invariant under z 7→ 1/z and z 7→ z. By continuity we can fur-
thermore assume that E is closed. The invariance of z 7→ 1/z implies that,
for proving the desired estimate, we only have to look at arguments z in the
intersection of E with the unit disk |z| ≤ 1. Using that E is stable under
complex conjugation it even suffices to look at the intersection of E with the
unit circle. More precisely we have the following lemma.

Lemma 1.1. Let E be a closed subset of C invariant under complex conju-
gation and under z 7→ 1/z. Let p ∈ C[x], and suppose that

sup
z∈E, |z|=1

|p(z)| < 1.

Then, for all sufficiently small s > 0 there exists a constant C > 1 such that

max(1, |z|) ≥ C |z|1/2|p(z)p(1/z)|s.

for all z ∈ E.

Proof. Denote by D the closed unit disk |z| ≤ 1. We claim that there is a
non-negative integer l such that

a := sup
z∈E∩D

|zlp∗(z)p(z)| < 1.

Indeed, otherwise there would be a sequence zk in E∩D and of non-negative
integers nk such that |znk

k p∗(zk)p(zk)| ≥ 1. Since E ∩ D is compact, we
may assume that zk converges towards an w ∈ E ∩ D. For this w we have
by continuity |p(w)p∗(w)| ≥ 1. If we had |w| = 1 then |p(w)| < 1, hence



1.6. NUMBERS WITH CONJUGATES OUTSIDE A GIVEN SET 17

|p∗(w)| > 1. But the latter is impossible since |p∗(w)| = |p(w)| for |w| = 1,
and since w ∈ E by the invariance of E under complex conjugation. But
then |w| < 1, and hence |p(zk)p

∗(zk)| ≥ |zk|−nk → ∞, which is absurd.
Thus, for any s ≤ 1/2(l + deg p) there is a C > 1 such that the desired

estimate holds for all z ∈ E∩D. But this holds then true for all z ∈ E by the
transformation formulas of both sides of the inequality under z 7→ 1/z.

The lemma explains how to find a function γ(x) as used for instance in
the proof of Schinzel’s theorem: There E = R, thus any integral polynomial
p with |p(x)| < 1 for x ∈ {±1}, the intersection of R with the unit circle,
would lead to a lower bound C > 1 for totally real numbers. The polynomial
p(x) = x2 − 1 is certainly the simplest solution, and it it exactly the one
which one finds in our proof.

Now suppose finally that we have an integral p 6= 0 satisfying the hypoth-
esis of the lemma. Then this yields immediately an absolute lower bound for
the heights of algebraic numbers all of whose conjugates lie outside E.

Lemma 1.2. Let E, p and C > 1 as in the preceding lemma. Suppose
furthermore that p ∈ Z[x] and p 6= 0. Then

H(α) ≥ C

for all α such that α and all its conjugates are contained in E and different
from 0 and the roots of p and p∗..

Since H(α) = 1 for roots of unity α, we see that the existence of a p
satisfying the hypothesis of the lemma implies that, for each integer n ≥ 1,
either C \ E contains at least one primitive root of unity, or else p has all
nth roots of unity as roots. In particular, C\E must intersect the unit circle
non-trivially.

Proof. By the preceding lemma we have the following estimate:

H(α)nC−n ≥ |a|
n∏

j=1

γ(αj) = |a|1/2−2ls|f(0)|1/2−lsals

n∏

j=1

|p(αj)p
∗(αj)|s,

where l is the degree of p. But |f(0)| and the factor after it are positive
powers of positive integers. Hence, for s < 1/4l, we obtain

H(α) ≥ C.
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It is certainly natural to start now with a set E, and to ask when we can
find an integral p 6= 0 satisfying the assumptions of the first lemma. The
answer will be found using the theory of transfinite diameters whose basics
we shall develop in the next section. We shall find as answer:

Lemma 1.3. Let E be a closed subset of C not containing the whole unit
circle and stable under complex conjugation. Then there is polynomial p ∈
Z[x], p 6= 0, such that

sup
z∈E, |z|=1

|p(z)| < 1.

Note that the condition that E does not contain the unit circle, is also
necessary. Otherwise we would be able to prove that H(α) is absolutely
bounded below by a constant greater than 1 for all α which are not roots of
unity or 0, which is certainly false (see the counter example H( n

√
2) at the

end of section 1.4. Postponing the proof of the preceding lemma to the next
section we can summarise by saying:

Theorem 1.13. (Langevin [Lvin]) Let G be an open region in C which in-
tersect the unit circle |z| = 1. Then there exists a constant C(G) > 1 such
that

H(α) ≥ C(G)

for any α ∈ Q which has no conjugates in G, which is not a root of unity
and different from 0.

Proof. This is a consequence of the preceding lemmas. For applying the
lemma 1.1 we actually need that G, or equivalently E := C \ G, is invariant
under complex multiplication and z 7→ 1/z. However, this can be assumed
without loss of generality. If z0 is on the unit circle and in G, then there is an
open neighbourhood of z0 and contained in G which is stable under z 7→ 1/z
(exercise). Clearly, we may replace G by this neighbourhood. Secondly,
we may then replace G by the union of G and G∗ := {z : z ∈ G}, since
all conjugates of α are outside G if and only if they are outside G∗. The
resulting G has then the necessary invariance properties.

By the last lemma we find, for E, a p satisfying the hypothesis of Lemma
1.1. Thus Langevin’s theorem is true for all α 6= 0 having no conjugates in
G apart from possibly those roots β of p or p∗ which are not roots of unity.
(Note in passing that any lth root of unity has a conjugate in G if l ≫ 0, and
that any root of unity for which this does not hold true must be a root of p).
However, the heights of the β are strictly larger than 1. Hence by choosing a
C(G) > 1 which is smaller than these finitely many heights and smaller than
C, we obtain the desired theorem.
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There is a somewhat remarkable consequence of Langevin’s theorem,
which suggests that it is easier to believe Lehmer’s conjecture than the con-
trary.

Corollary 1.13.1. If there were a sequence fn of polynomials in Z[x] with
µ(fn) > 1 but lim µ(fn) = 1 (i.e. if the Lehmer conjecture where false), then
any point on the unit circle |z| = 1 would be an accumulation point of the
roots of the fn.

1.7 Transfinite diameters

In this section we shall prove the main lemma 1.3, which we needed for the
proof Langevin’s theorem. For this we shall need the theory of transfinite
diameters invented by Fekete and Tonelli [FeTo].

For a compact subset E of C we set

ρn(E) := inf{|p|E : p ∈ C[x]n, p = xn + . . . }.

Here we use

|p|E = sup
z∈E

|p(z)|.

One can show that the number ρn(E) is even attained by a unitary polyno-
mial Cn ∈ C[x]n, and that, even more, Cn is unique if E has more than n
points [FeTo]. This Cn is called the nth Chebyshev polynomial of E.

Note that, in the definition of ρn(E), we can restrict to real polynomials
if E is stable under complex conjugation. Namely, in this case we have

|1
2
(p + p)|E ≤ 1

2
(|p|E + |p|E) = |p|E

for any polynomial p, where p is obtained from p by taking the complex
conjugates of the coefficients of p. In particular, Cn is real for such E.

By a similar argument we see that, in the case that E is the unit circle
S : |z| = 1, we can restrict to those unitary polynomials in C[x]n which are
invariant under x 7→ ζx for all nth roots of unity. Indeed,

p̃(x) =
1

n

∑

ζn=1

p(ζx)

is unitary of degree n and satisfies |p̃|S ≤ |p|S. On the other hand, the only
unitary polynomials in C[x]n which are invariant under all x 7→ ζx, are the
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xn +c, where c is a constant (exercise). Clearly xn is thus the nth Chebyshev
polynomial of the unit circle, and consequently

ρn(S) = |xn|S = 1.

For an integer n ≥ 0 let Tn(x) be the polynomial defined by

cos(nt) = 2n−1Tn(cos t).

Thus Tn is a unitary polynomial of degree n. One has T1 = x, T2 = x2 − 1,
T3 = x3− 3

4
x. The polynomial 2n−1Tn is the polynomial which is usually called

the nth Chebishev polynomial without making any reference to transfinite
diameters. In fact, Tn is the nth Chebishev polynomial of the interval I =
[−1, +1] in the sense defined before.

Indeed, as is obvious from the definition, |Tn(x)|I = 1/2n−1. Furthermore
Tn(x) attains n + 1 times the critical values ±21−n in the interval [−1, +1],
with alternating signs from left to right. Hence, if p were a unitary polynomial
of degree n with |p|I < 21−n, then f −p would be a polynomial different from
0, of degree ≤ (n − 1) and whose values changes n + 1 times the sign in I;
thus it would have n zeroes, a contradiction.

The transfinite diameter (or Chebichev constant) of a compact subset E
is defined as

ρ = lim
n

ρn(E)1/n.

For the unit circle and closed intervals [a, b] on the real axis we have by
the preceding discussion

Theorem 1.14. One has ρ(S) = 1 and ρ([a, b]) = b−a
4

for all real a ≤ b.

Proof. The second formula follows from ρ([−1, +1]) = 1
2

on using the general
formulas ρ(t+E) = ρ(E) and ρ(λE) = λρ(E) (which, in turn are an obvious
consequence of |f(x)|t+E = |f(x + t)|E and |f(x)|λE = |λ||λ−1f(λx)|E).

Theorem 1.15. The limit ρ(E) exists and is finite.

Proof. Since E is compact it is contained in a disk |z| ≤ R for some R. Hence

ρn(E)1/n ≤ |xn|1/n
E = R. In particular,

α := lim inf ρn(E)1/n, β := lim sup ρn(E)1/n

are both finite. Let ε > 0, and let p a unitary polynomial, say of degree l,
such that |p|1/l

E < α + ε. Then there exists a constant C such that

|zrpk|E ≤ C(α + ε)n (n = kl + r, 0 ≤ r < n)

for all n. Hence ρn(E)1/n ≤ C1/n(α + ε) → α + ε, and hence β = α.
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We shall need

Lemma 1.4. Let A be an arc of length t ≤ 2π on the unit circle. Then

ρ(A) ≤ sin(t/4).

In fact one can show that one actually has equality [FeTo]

Proof. By applying a suitable rotation we may suppose that A is stable under
complex conjugation, contains 1 and has end points eit/2 and e−it/2. Consider
the map

R : A → I := [cos(t/2), 1], z 7→ 1

2
(z +

1

z
),

which is 2 to 1. If p is a unitary polynomial of degree n, then

|p|I = |p ◦ R|A = 2−n
∣∣(2x)np

(1

2
(x +

1

x
)
)∣∣

A
≥ 2−nρ2n(A),

and hence
1 − cos(t/2)

4
= ρ(I) ≥ ρ(A)2,

i.e. sin2(t/4) ≥ ρ(A)2.

Theorem 1.16. (Kakeya) Let E be a compact subset such that |p|E < 1 for
some unitary polynomial p ∈ R[x]. Then there exists a unitary polynomial
q ∈ Z[x] with |q|E < 1.

Proof. Let p be real, unitary, say of degree n with |p|E < 1. Clearly n ≥ 1.
For positive integral m write m = qn + r with integral q and 0 ≤ r < n, and
set

pm(x) = xrp(x)q.

Then
|pm| ≤ b am (b = max

0≤r<n
|zr|E, a = |p|1/n

E .)

Fix a positive integer s. For each r we can find scalars |λj| < 1 such that

Lr := pr + λ1pr−1 + · · · + λr−sps = Gr + Hr

with a unitary Gr ∈ Z[x] and an H of degree strictly smaller than s and
whose coefficients have absolute value less than 1. One has

|Lr|E ≤ b(ar + · · · + as) ≤ b
as

1 − a
.

Thus if s is sufficiently big, then |Lr|E < 1/3 for all r. But by construction the
sequence |Hr|E is bounded. Hence for some r1 > r2 we have |Hr1

− Hr2
|E <

1/3. But then

|Gr1
−Gr2

|E = |Lr1
−Hr1

−(Lr2
−Hr2

)|E ≤ |Lr1
|E + |Lr1

|E + |Hr1
−Hr2

|E < 1.
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1.8 Heights of non-reciprocal numbers

We call a polynomial reciprocal if its set of roots is invariant under z 7→
1/z, and and we call an algebraic number α 6= 0 reciprocal if the set of all
conjugate numbers is invariant under z 7→ 1/z. Clearly, a polynomial is
reciprocal if and only if if and only if f ∗ = af for some number a.

Theorem 1.17. (Smyth) Let f ∈ Z[x], and assume that f is not reciprocal
and f(0) 6= 0. Then

µ(f) ≥ θ = 1.3247 . . . ,

where θ is the real solution of θ3 − θ − 1 = 0.

Corollary 1.17.1. If f ∈ Z[x] is irreducible and of odd degree, then

µ(f) ≥ θ.

Proof. Assume that f = af ∗ for same integer a. Then the set of roots of f is
invariant under the involution α 7→ 1/α. Hence, if the degree of f were odd,
then at least one root satisfies α = 1/α, i.e. α = ±1. Hence any irreducible
polynomial of odd degree is either equal to a multiple of x+1 or x−1, or else
is not reciprocal. Hence Smyth theorem applies to all irreducible polynomials
of odd degree.

We may restate Smyth theorem and its corollary by saying: If α is an
algebraic number of degree n such that n is odd degree or such that α is not
reciprocal, then

H(α) ≥ n
√

θ.

Corollary 1.17.2. (Siegel) θ is the smallest Pisot number.

Proof. The set of roots of a minimal polynomial f of a Pisot number can only
be invariant under α 7→ 1/α if the degree of f is two. Thus Smyth theorem

applies to f unless f is of degree 2. But in the latter case µ(f) ≥ 1+
√

5
2

as
we already saw before (see section 1.2.

Corollary 1.17.3. (Cassels) Assume that f(x) =
∏n

j=1(x − αj) ∈ Z[x]

satisfies |αj| < 1 + log θ
n

(1 ≤ j ≤ n). Then f = ±f ∗.

Proof. We remark that the original theorem of Cassels was stated with
log θ = 0.28 . . . replaced by 0.1.

For the proof we simply note that by assumption

µ(f) <
(
1 +

log θ

n

)n

≤ elog θ = θ.

Thus Smyth theorem cannot apply to f .
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1.9 Proof of Smyth’s theorem

We follow in this section essentially the original proof in [Smy1]. For a
complex number α set

Bα(z) =
z − α

1 − αz
.

If α is inside the unit disk then Bα is holomorphic in an open neighborhood
of the unit disk and satisfies |Bα(z)| = 1 for |z| = 1. Let now α1, . . . , αr be
complex numbers inside the unit disk, and let

B(z) =
r∏

j=1

Bαj
(z) = c0 + c1z + c2z

2 + · · · .

We shall call B the Blaschke function associated to the family of the aj.

Lemma 1.5. One has 1 = |c0|2 + |c1|2 + |c2|2 + · · · ,

Proof. This follows from

1 =
1

2π

∫ 2π

0

|B(eit)|2 dt =
1

2π

∑

k,l

ckcl

∫ 2π

0

ei(k−l) dt.

Assume now that f is a real polynomial without zeroes on the unit circle
and such that f(0) 6= 0. Let B and B̂ be the Blaschke functions associated
to the zeroes of f and f ∗ inside the unit circle, respectively (with repeated
multiple roots). Then B/f has no zeroes, and its poles are the roots of f
outside the unit circle and the 1/α, where α runs through the roots of f
inside the unit circle; and the same holds true for B̂/f∗ since the set of roots
of f is invariant under z 7→ z. In fact, one easily checks

B

f
=

B̂

f ∗ .

Let ck, dk and ak denote the Taylor coefficients of B, B̂ and f/f∗ at z = 0,
respectively. Assume that the constant and leading term of f are equal to
±1. Then c := |c0| = |d0| = 1/µ(f) and a0 = ±1. If, furthermore, f/f∗

is not constant, then there exists a smallest k ≥ 1 such that ak 6= 0, and
consequently,

ck − a0dk = akd0.
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From this (and |a0| = 1) we see that |dk| ≥ |akd0|/2 = |ak|c/2 or |ck| ≥
|ak|c/2. Hence from the preceding lemma

1 ≥ c2 +
|ak|2

4
c2,

and thus

µ(f) ≥
(
1 +

|ak|2
4

) 1

2

.

Assume now that f is integral, irreducible and not reciprocal and f(0) 6=
0. Then it has no roots on the unit circle (since such a root would be a
root of f ∗ too), and f/f∗ is not constant. For the proof of Smyth theorem
we may moreover assume that the leading term and constant term of f is 1
(since otherwise µ(f) ≥ 2). Thus f satisfies the hypothesis used in the last
paragraph, and accordingly the last estimate for µ(f) holds true. However,
here f/f∗ has integral Taylor coefficients, in particular |ak| ≥ 1. Hence

µ(f) ≥
√

5

4
= 1.118 · · · .

This is already a weak version of Smyth’s theorem. His sharp bound is
obtained, essentially by the same method, However, by a more subtle in-
vestigation of the coefficients of the Blaschke function than in our lemma
above.

Lemma 1.6. Let n ≥ 1.

1. For all real x0, . . . , xn one has

(c0x0)
2 + (c0x1 + c1xn)2 + · · · + (c0xn + · · · + cnx0)

2

≤ x2
0 + x2

1 + · · · + x2
n. (1.1)

2. Set

A =




cn cn−1 cn−2 . . . c0

cn−1 cn−2 . . . c0 0
cn−2 . . . c0 0 0

...
c0




.

Then 1 + A and 1 − A are symmetric, positive definite matrices.
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3. In particular, one has

1 ≥ c2
0 + |cn|, (1.2)

−(1 − c2
0 −

c2
n

1 + c0

) ≤ c2n ≤ 1 − c2
0 −

c2
n

1 − c0

. (1.3)

and the same inequalities with ck replaced by dk.

Proof. In fact, the above inequalities hold true for the Taylor coefficients at
0 of any function which is holomorphic in an open neighborhood of the unit
disk |z| ≤ 1, satisfies |f(z)| ≤ 1 for |z| = 1 and has real Taylor coefficients
cj. Indeed, setting p(z) = x0 + x1z + · · · + xnz

n, we have

n∑

j=0

(c0xj + · · · + cjx0)
2 =

1

2π

∫ 2π

0

|f(z)p(z)|2 dt (z = eit)

≤ 1

2π

∫ 2π

0

|p(z)|2 dt =
n∑

j=0

x2
j .

The second assertion is obtained using the Cauchy-Schwartz inequality
and the first one:

±xtAx ≤ |x| |Ax| ≤ |x|2.
Let ε = ±1. Since 1 + εA ≥ 0 we obtain in particular

det

(
1 + εcn εc0

εc0 1

)
, det




1 + εc2n εcn εc0

εcn 1 + εc0 0
εc0 0 1


 ≥ 0,

which implies the last two inequalities.

We saw above that max(|cn|, |dn|) ≥ |c|/2. Together with the third in-
equality this implies already 1 − c2 ≥ c/2, µ(f)2 − µ(f)/2 − 1 ≥ 0, and
hence

µ(f) ≥ 1 +
√

17

4
= 1.280 . . . .

We can assume without loss of generality that µ(f) ≤ 4
3
. We set

f(0)
f

f ∗ = 1 + akz
k + alz

l + O(zl+1),

where k < l and ak, al 6= 0. By multiplying B by ±f(0) and B̂ by ±1 we can

then assume that B(0), B̂(0) > 0 and that

B = (1 + akz
k + alz

l + · · · )B̂.
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In particular, we have
c := c0 = d0 = µ(f)−1,

and furthermore

cj = dj (0 ≤ j < k) (1.4)

ck = dk + c0ak (1.5)

ck+1 = dk+1 + d1ak (1.6)

cl−1 = dl−1 + dl−k−1ak (1.7)

cl = dl + dl−kak + c0al (1.8)

As a first consequence we note

|ak| = 1 (1.9)

|al| = 1 (1.10)

|ck| + |dk| = c (1.11)

Indeed, if |ak| ≥ 2, then, by (1.5), we would have max(|ck|, |dk|) ≥ c.
Hence, by the lemma 1 − c2 ≥ c, which contradicts c ≥ 4

3
.

Similarly, if |al| ≥ 2, then, by (1.8), max(|cl|, |dl|, |dl−k|) ≥ 2
3
c, and hence,

by the lemma, 1 − c2 ≥ 2
3
c. Again this contradicts c ≥ 4

3
.

Finally, by (1.5) |ck| + |dk| ≥ |ck − dk| ≥ c. If the inequality were strict,
then c = |ck| − |dk| or c = |dk| − |ck|, in any case, max(|ck|, |dk|) ≥ c, which
is impossible as we have already seen.
Case 2k ≤ l: We can assume that 2k < l. Otherwise we interchange f and
f ∗. Namely, using

(1 + akx
k + a2kx

2k + · · · )−1 = 1 − akx
k + (a2

k − a2k)x
2k + · · · ,

we see that then a2
k − a2k = 0 (since otherwise this would be 2 by (1.9),

(1.10)).
We now apply (1.3) to obtain

−(1 − c2 − c2
k

1 + c0

) ≤ c2k ≤ 1 − c2 − c2
k

1 − c0

−(1 − d2 − d2
k

1 − d0

) ≤ −d2k ≤ 1 − d2 − d2
k

1 + d0

).

Adding both inequalities gives (on using also (1.5))

−2(1 − c2) +
d2

k

1 − d0

+
c2
k

1 + c0

≤ c2k − d2k = dkak (1.12)

≤ 2(1 − c2) − d2
k

1 + d0

− c2
k

1 − c0

. (1.13)
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Using (1.11) this gives

|dk| ≤ max(H(|dk|), H(|ck|)),

where we use

H(x) := 2(1 − c2) −
( x2

1 + c
+

(c − x)2

1 − c

)
.

But 1− c2 ≥ |dk| ≥ c−|ck| ≥ c+ c2 − 1 by (1.3),(1.7) and (1.2), respectively,
and the same holds true with ck and dk interchanged. Hence if we set I =
[c2 + c − 1, 1 − c2], then we find

c2 + c − 1 ≤ max
x∈I

H(x).

But H(x) takes its maximum in x = 1+c
2

. Since c ≥ 3
4

we have 1+c
2

≥ 1 − c2

(since the latter is equivalent to c 6∈]− 1, 1
2
[). Hence H(x) is increasing on I,

and thus

c2 + c − 1 ≤ H(1 − c2) = 2(1 − c2) − (1 − c2)2

1 + c
− (c2 + c − 1)2

1 − c
,

i.e. −c3 − c2 + 1 ≥ 0. This gives finally µ(f)3 − µ(f) − 1 ≥ 0, which means
that µ(f) is to the right of the real root θ of x3 − x − 1 = 0.
Case l < 2k: We may assume ak = ±1 (otherwise interchange f and f ∗).
By (1.1) we have, for all β, γ ∈ R,

c2 + (cl−k + γc)2 + (ck + γc2k−l − c)2 + (cl + γck − cl−k + βc)2,

c2 + (−dl−k − γc)2 + (−dk − γd2k−l − c)2 + (−dl − γdk − dl−k + βc)2

≤ 2 + γ2 + β2.

We add these two inequalities, use a2+b2

2
≥

(
a+b
2

)2

and cj = dj for 1 ≤ j < k,

and set x = cl−k = dl−k to obtain

c2 +
(
x+γc

)2
+

(ck − dk

2
− c

)2
+

(cl − dl

2
+γ

ck − dk

2
−x+βc

)2 ≤ 2+γ2 +β2.

By (1.5) and (1.8), using ak = +1, this can be rewritten as

5

4
c2 + (x + γc)2 +

(x + cal

2
+ γ

c

2
− x + βc

)2 ≤ 2 + γ2 + β2.

Replacing x by −alx, β by alβ and γ by −alγ we get

5

4
c2 + (x + γc)2 +

(c + x − γc

2
+ βc

)2 ≤ 2 + γ2 + β2.
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If we view the difference of the right hand side and the left hand side as
quadratic polynomial in β, then the inequality states that its discriminant is
≤ 0, i.e. (using 1 − c2 > 0) that

5

4
c2 + (x + γc)2 +

(c + x − γc)2

4(1 − c2)
≤ 2 + γ2.

Again, viewing the difference of both sides as polynomial in γ, we obtain
that its discriminant is ≤ 0. Thus (using that the coefficient of γ2 is positive
since c < 4/(1 +

√
17), as follows from 1 − c2 ≥ c/2) we have

5

4
c2 + x2 +

(c − x)2

4(1 − c2)
+

(2xc − c(c+x)
2(1−c2)

)2

4(1 − c2 − c2

4(1−c2)
)
≤ 2

Now, again, since c < 4/(1 +
√

17), the left hand side minus 2 viewed as
polynomial in x has positive leading term. Since it is ≤ 0 for at least one
x it has a real root, hence non negative discriminant. By a straight forward
calculation this yields 40c4 − 93c2 + 40 ≥ 0, or, in terms of µ(f), finally

µ(f)4 − 93

40
µ(f) + 1 ≥ 0.

This implies
µ(f) ≥ 1.3248 · · · > θ = 1.3247 . . . ,

and proves thus Smyth’s theorem.

1.10 Remarks

Parts of the proof of Smyth theorem can already be found in [Sieg], where it
was proved that the real root of x3 − x− 1 = 0 is the smallest Pisot number.
The sharpest result in the direction of the general Lehmer conjecture is due to
Dobrowolski, Cantor and Straus and Louboutin [Dobr], [Loub] which states
that there exists a constant γ > 0 such that

H(α)n ≥ 1 + γ

(
log log n

log n

)3

for all α 6= 0 of degree n which are not equal to a root of unity. The pre-
sentation chosen in this chapter, which led from the easy proof of Schinzel’s
and Zhang’s theorem to Langevin’s theorem, does not correspond to the cor-
rect chronological order of their discovery. Indeed, Langevin’s theorem was
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published in 1985, and the former proofs were found almost ten years later.
However, they are all three based on what is sometimes called the resul-
tant method, which is already more or less explicitly used by Schinzel [Schi].
Zhang’s theorem (along the lines of Zagier’s proof) has been generalized
by Beukers, Schieckewei, Schmidt, Wirsing, Zagier for obtaining absolutely
lower bounds for heights along hypersurfaces; see [BeZa] and the references
therein, and see the next section for a theorem of this kind. In particular,
as corollary of the main result in [BeZa] one obtains a part of Smyth theo-
rem: If the trace of α is integral and different from 1/α (and α is thus not

self-reciprocal), then H(α)n ≥
√

1+
√

5
2

, where n is the degree of α. Another

possible generalization of Zhang’s theorem was investigated in [Smy2]. Here
Zhang’s theorem is interpreted as giving an absolute lower bound for the
Mahler measure of polynomials in X(X − 1), and the paper generalizes this
result to polynomials of the form p(T (x)), where T (X) ∈ Z[X] is of degree
n ≥ 2, divisible by X, but 6= ±Xn. This point of view is also taken up in
[Doch]
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Part 2

Heights on Elliptic Curves

So far we have discussed heights of algebraic numbers. One may view this
theory as theory of heights on the curve P1. Indeed, for a point P = [x : y] ∈
P1(K), where K is a number field, define

H(P ) =
∏

v∈PK

max(|x|v, |y|v)1/[K:Q].

By the product formula this does not depend on the choice of projective
coordinates of P , and if we identify α ∈ K with the point P := [α : 1] ∈
P1(K), then H(P ) = H(α). In this section we now discuss heights on curves
of genus 1, which may be viewed as a natural step after the genus 0 case
discussed before.

However, before going into this theory, we shall reinterprete Zhang’s the-
orem. This theorem is in a sense on the boundary between the theory of
heights of algebraic numbers and heights on general curves. Next, we have
to discuss shortly heights on projective space, since some of the general results
about such heights are needed for the theory of heights on elliptic curves.

2.1 Heights on affine plane curves

In this section we generalize the proof of Zhang’s theorem as given in [Zagi].
For this we restate Zhang’s theorem as a theorem about heights on affine,
possibly reducible, plane algebraic curves defined over Q. By such a curve
we understand the set C of solutions (x, y) of an equation F (x, y) = 0, where
F ∈ Q[x, y], and F is not constant. We use C∗ for the curve defined by

F ∗(x, y) := xmynF (1/x, 1/y),

where m and n are the degrees of F (x, y) in x and y respectively.

31
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Zhang’s theorem may be restated by saying that H(α)H(β) > C for all
(α, β) on the curve x + y = 1. This suggests of thinking of H(α)H(β) as
height of the point P = (α, β), and then Zhang’s theorem says that the
heights of the points on the line x + y = 1 are bounded to below. Or it may
also be thought of saying that the heights of two algebraic numbers satisfying
an algebraic (here linear) relation can not be both arbitrary small. It is not
hard to generalize Zhang’s theorem as follows:

Theorem 2.1. Let C be an affine plane curve defined over Q such that C
intersects C∗ in only finitely many points. Then there is a constant A > 1
such that

H(α)H(β) ≥ A

for all pairs of algebraic numbers (α, β) on C such that α, β 6= 0 and (α, β)
is not an intersection point of C with C∗.

Proof. Let G(x, y) be a polynomial which vanishes at the intersection points
of C with C∗. For real s > 0 set

γs(z, w) = |z| 12 |w| 12 |G(z, w)G(1/z, 1/w)|s.

We show that for every sufficiently small s > 0 there is a constant A = As > 1
(depending on s) such that

max(1, |z|) max(1, |w|) ≥ Asγs(z, w)

for all (z, w) on the truncated curve D := C ∪ C∗, which is defined by
FF ∗ = 0, if, say C is defined by F = 0.

Since both sides of the desired inequality have the same invariance under
z 7→ 1/z and under w 7→ 1/w, it suffices to prove the estimate for all points
on the curve D0 := D ∩ (D×D), where D is the disk |z| ≤ 1. Hence we have
to show that for all l ≫ 0

|z|l|w|l|G(z, w)G∗(z, w)| < 1

on D0.
For proving this note that the number of points (z, w) of D0 with |zw| = 1

is finite, and that, for any such point, one has G(z, w) = 0. Indeed, if (z, w) is
such a point, then (1/z, 1/w) = (z, w), and hence, using that F and F ∗ have
real coefficients, F (z, w) = 0 implies F ∗(z, w) = 0 and vice versa, i.e. (z, w)
is an intersection point of C and C∗. Hence, there is an open neighborhood
U of all these points such that the last inequality holds true on U . Since
D0 \ U is compact there exists a constant R < 1 such that |zw| ≤ R on
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D0 \ U . Moreover, |GG∗| < a on D0 \ U with a suitable constant a. Thus, if
l satisfies Rl′a < 1, where l′ = (l + max(m,n))/2 with m and n denoting the
degree of G in x and y respectively, then the desired inequality holds true on
all of D0.

To finish the proof we proceed exactly as in the proof of Zhang’s theorem.
Let (α, β) is a pair of algebraic numbers on C, say of degree d and e and
with normalized minimal polynomials f = axd + · · · and g = bxe + · · · ,
respectively. Then, for all sufficiently small s, we have

H(α)dH(β)e = |ab|
∏

α′,β′

max(1, |α′|) max(1, |β′|)

≥ Ad+e
s |a| 12−sm|b| 12−sn|f(0)| 12−sm∗|g(0)| 12−sn∗·

·
∏

α′,β′

|am+m∗

bn+n∗(GG∗)(α′, β′)|s,

where m∗ and n∗ are the degrees of G∗ in x and y, respectively, and where
α′ and β′ are running through the conjugates of α and β. If

s max(m,m∗, n, n∗) < 1/2

and if G has integral coefficients, then the right hand side is Ad+e times
positive powers of nonnegative integers. Hence it is bounded to below by
≥ Am+n, unless αβ(GG∗)(α, β) = 0.

We finally assume that we have chosen G such that the curves D : GG∗ =
0 and C intersect in only finitely many points. If (α, β) is on C, but not on
C∗, then α and β are not both roots of unity, and hence H(α)H(β) > 1
by Kronecker’s theorem. Thus, replacing As by the minimum of As and
the H(α)H(β), where (α, β) runs through the finitely many points of C and
D : GG∗ = 0, but not on C∗, finally gives the desired estimate.

It remains to ensure the existence of a G with integral coefficients, van-
ishing on C ∩ C∗, but such that D : GG∗ = 0 and C have only finitely
many points in common. Indeed, such polynomials exist. We can e.g. choose
through each intersection P point of C and C∗ a line LP (x, y) = 0, such that
neither this line, nor one of its finitely many conjugate lines LP,j(x, y) = 0
lie on C or C∗. (A conjugate line is one whose defining equation is obtained
by applying to the coefficients of LP a Galois substitution of Q.) Then
G :=

∏
P,j LP,j has the desired properties.

As already mentioned before, we had C : x + y = 1 in Zhang’s theorem.
Thus C∗ : x + y = xy. The intersection points of C and C∗ are ρ = 1+

√
−3

2

and its complex conjugate. If we take for the G used in the preceding proof

G = (ρx − ρy)(ρx − ρy) = x2 − xy + y2,
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then G∗ = x2 − xy + y2, and

γs(1, 1 − z) = |z| 12 |1 − z| 12
( |z2 − z + 1|

|z||1 − z|
)2s

.

This is the function we actually used in our original proof with s = 1/4
√

5.

2.2 Heights on projective space

For a point P in Pn, say with projective coordinates [x0 : · · · : xn] in a
number field K, we define its height HK(P ) relative to K and its absolute
height H(P ) by

HK(P ) =
∏

v∈PK

max
0≤j≤n

|xj|v, H(P ) = HK(P )1/[K:Q].

By the product formula
∏

v |t|v = 1 (t ∈ K) this is well defined (see the proof
of 1.10), and by the compatibility relations H(P ) does not depend on the
choice of the field K.

If P ∈ Pn(Q), then we may choose the projective coordinates xj in Z and
such that gcd(x0, . . . , xn) = 1. But then, for each non-archimedian v, we
have |xj|v ≤ 1 for all j and |xj|v = 1 for at least one j, and hence H(P ) is
given by the more intuitive formula

H(P ) = max
j

|xj|

with the usual archimedean absolute values |xj|.
If P = [x0 : · · · : xn] ∈ Pn(Q) and, say, xj 6= 0, then the minimal field of

definition Q(P ) if P is defined as

Q(P ) = Q
(x0

xj

, . . . ,
xn

xj

)
.

This does not depend on the choice of xj.
We shall need two basic properties of the absolute height.

Theorem 2.2. For each constant C and for each integer d the set

{P ∈ Pn |H(P ) ≤ C, [Q(P ) : Q] ≤ d}

is finite.
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Proof. Indeed, one has for any P ∈ Pn, say P = [x0 : · · · : xn] with at least
one xj = 1 and with K = Q(P ),

HK(P ) =
∏

v∈PK

max
j

|xj|v ≥ max
j

∏

v

max(1, |xj|v) = max
j

HK(xj).

If [Q(P ) : Q] ≤ d then we also have [Q(xj) : Q] ≤ d for all j. Thus the
theorem follows from the special case n = 1, which we proved in section
1.4.

By a morphism
F : Pn → Pm

of degree d we understand a map of the form

F (P ) = [f0(x0, . . . , xn), . . . , fn(x0, . . . , xn)], (P = [x0 : · · · : xn]),

where the fj are homogeneous polynomials of degree d and with coefficients in
Q. In particular, for such a set of polynomials fj, one has fj(x0, . . . , xn) = 0
for all 0 ≤ j ≤ m if and only if x0 = x1 = · · · = xm = 0.

Theorem 2.3. Let F : Pn → Pm be a morphism of degree d. Then there
exist constants C1, C2 > 0 such that

C1H(P )d ≤ H(F (P )) ≤ C2H(P )d

for all P ∈ Pn.

Proof. Let P = [x0 : · · · : xn] ∈ Pn(K). For a place v ∈ PK we set ε(v) = 1
if v is archimedean, and ε(v) = 0 otherwise. Using this symbol we have, for
all v and all points aj ∈ K,

|a1 + · · · + ar|v ≤ rε(v) max
1≤j≤r

|aj|v.

Moreover, we use Hv(P ) = maxj |xj|v, thus HK =
∏

v Hv.
Accordingly we have (using fj,k for the

(
n+d

d

)
coefficients of fj)

Hv(F (P )) = max
j

|fj([x0 : · · · : xn])|v

≤
(

n + d

d

)ε(v)(
max

j,k
|fj,k|v

)(
max

j
|xj|dv

)
.

This yields the second inequality.
For the first one we need the Hilbert Nullstellensatz (see any text book an

algebraic geometry). In our case it asserts that, for any polynomial f which
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vanishes at the common zeroes of all the fj, some positive integral power f r

lies in the ideal I generated by the fj in the ring Q[X0, . . . , Xn]. Now, the is
the only common zero of the fj is the point 0, and hence, for a suitable integer
r the polynomials Xr

0 , . . . , Xr
n lie in I. In other words Xr =

∑
j Pk,jfj with

suitable Pk,j ∈ Q[X0, . . . , Xn]. These identities remain valid if we replace the
Pk,j by their r − dth homogeneous component, and hence we may assume
that the Pk,j are homogeneous of degree r − d. Enlarging K if necessary, we
may furthermore assume that the Pk,j have coefficients in K. Then, similar
to the reasoning above, we have

Hv(P )r = max
k

|
∑

j

(Pk,jfj)(x0, . . . , xn)|v

≤ (m + 1)ε(v)
(
max

k,j
|Pk,j(x0, . . . , xn)|v

)(
max

j
|fj(x0, . . . , xn)|v

)

≤ (m + 1)ε(v)

(
n + r − d

r − d

)ε(v)

C Hv(P )r−dHv(F (P )),

where C is the maximum of the v-adic valuations of the coefficients of all the
Pk,j. This implies the first estimate.

2.3 Plane curves as diophantine equations

Everybody knows how to compute L(Q) for a line L/Q in the projective
plane P2. It is also not difficult to compute C(Q) for a projective plane curve
C/Q of degree 2. Let us consider, to have a concrete example, the circle
C which is given in affine coordinates by C : x2 + y2 = 1. We fix a point
O ∈ C(Q). Then, for P ∈ C(Q), the line LP through O and P is defined
over Q. If P = (x1, y1), then LP is given by the equation

y =
y1

x1 − 1
(x − 1).

Conversely, if L is a line through O, then L intersects C in exactly two points,
in O and in a second point P = (x1, y1). (If P = O then LP is the tangent
to C at O and vice versa.) If L is defined over Q, then so is P . Indeed, if L
is given by y = λ(x− 1), then x1 is a solution of the quadratic equation over
Q obtained by replacing y in x2 + y2 = 1 by λx + µ. Since x = 1 is also a
solution, x1 is necessarily rational, and so is y1 = λx1 + µ. Working out the
details one finds x2

1 + λ2(x1 − 1)2 = 1, i.e.

x1 =
λ2 − 1

λ2 + 1
, y1 =

−2λ

λ2 + 1
.
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In general, if C/Q is an irreducible smooth projective plane curve of
degree 2, and O = (x0, y0) ∈ C(Q), then one can easily verify that the map

C → P1, P = (x1, y1) 7→
y1 − y0

x1 − x0

= slope of the line through O and P

is an isomorphism defined over Q and mapping C(Q) onto P1(Q). The above
method of determining C(Q) is effective, apart from the fact that we have
to find at least one O ∈ C(Q) to start with.

We now turn to cubic curves defined over Q. Here the situation has
still some similarities with the quadratic case, though there are also much
more complications. Again we start with the idea of reducing to algebraic
equations in one variable by intersecting with lines. However, if we intersect a
cubic curve C/Q with a line, then there will be in general three intersection
points. But still, if the line is defined over Q and two of the intersection
points are in C(Q), then the third one belongs to C(Q) too. However, one
can make an even stronger statement.

To explain this we restrict for the following to elliptic curves in Weierstrass
form defined over a number field K. By such a curve we understand a cubic
curve E which, in affine coordinates, is given by an equation of the form

E : y2 = x3 + Ax + B,

where A,B are elements of K, and where we assume that the the polynomial
in x on the right has no multiple roots, i.e. that its discriminant

∆E := −4A3 − 27B2 6= 0.

Such a curve has exactly one point O on the line at infinity, which in homo-
geneous coordinates is given by

O = [0 : 1 : 0].

The condition ∆E 6= 0 ensures that E is a non-singular curve. The restriction
to such curves is not a serious one, since any non-singular plane cubic curve
is isomorphic to a curve in Weierstrass form (see the next section for details).

If for P = (x, y) ∈ E we set −P := (x,−y), and if we define a binary
operation + on E by letting P1 + P2 the unique point P such that P1, P2

and −P (counting multiplicities) are the intersection points of E with a line,
then E becomes a group (for details and a proof of this see the next section).
Clearly, the point 0 at infinity is the neutral element of E (it is an inflection
point), and if α is a root of X3 + AX + B, then (α, 0) is a point of order 2.
Finally, if E is defined over K, then E(K) is a subgroup of E. This follows
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easily by looking at the equations expressing the affine coordinates of P1 +P2

in terms of those of P1, P2 (again, see the next section for details).
Assume now, to come back to diophantine equations over Q and to show

the idea for the general theory developed in a moment, that E is of the
special form

E : y2 = (x − a)(x − b)(x − c)

with pairwise different integers a, b, c. Clearly the question is when, for a
rational number x, the product (x − a)(x − b)(x − c) is a square in Q. To
analyze this we introduce the map

φ : E(Q) → G := (Q∗/Q∗2)2,

P 7→





(
(x − a)Q∗2, (x − b)Q∗2

)
if x 6= a, b, P 6= 0

1 if P = 0(
(x − b)(x − c)Q∗2, (x − b)Q∗2

)
if x = a(

(x − a)Q∗2, (x − a)(x − c)Q∗2
)

if x = b

,

where (x, y) are the affine coordinates of P if P 6= 0.

Lemma 2.1. The map φ is a group homomorphism with kernel 2E(Q).

Proof. For showing that φ is a group homomorphism it clearly suffices to
show that φ(P1)φ(P2)φ(P3) = 1 if P1 + P2 + P3 = 0. This is trivial if one of
he Pj is 0. Otherwise the Pj lie on a line y = λx + µ with λ, µ ∈∈ Q, λ 6= 0.
Hence, if we set Pj = (xj, yj), then the xj are the solutions of

(x − a)(x − b)(x − c) − (λx + µ)2 = 0,

Hence we have

(x − a)(x − b)(x − c) − (λx + µ)2 = (x − x1)(x − x2)(x − x3).

In particular, considering this equation for x = a, x = b and x = c, respec-
tively, we observe that

(a−x1)(a−x2)(a−x3), (b−x1)(b−x2)(b−x3), (c−x1)(c−x2)(c−x3) ∈ Q2.

From this one easily obtains φ(P1)φ(P2)φ(P3) = 1.
Clearly 2E(Q) is mapped to 1 since Q∗/Q∗2 has exponent 2. Conversely,

assume that φ(P ) = 1. . . . to be completed later.

For v ∈ PQ, let Gv denote the subgroup (of order 2) in Q∗/Q∗ generated
by pQ∗2 if v is non-archimedean belonging to the prime number p, and by
(−1)Q∗2, if v is archimedean. Clearly, Q∗/Q∗2 =

∑
v∈PQ

Gv.
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Lemma 2.2. The image of φ is contained in
⊕

p|∆E or p=∞
G2

p,

where ∆E = (a − b)2(a − c)2(b − c)2 is the discriminant of E. In particular,
it is finite.

Proof. Let P ∈ E(Q), P 6= 0, say P = (x, y). Let p be a prime number, and
let φ(P ) = (uQ∗2, vQ∗2). We have to show that ordp(u) and ordp(v) are both
even.

For this let pn be the exact power of p in the prime decomposition of x.
If n < 0, then x 6= 0, a, b and we can take u = x− a and v = x− b. Since

a, b, c are integral pn is also the exact power of p in x − a, x − b and x − c.
We have accordingly ordp(y

2) = 3n. On the other hand ordp(y
2) is even. It

follows that n = ordp(u) = ordp(v) is even.
If n ≥ 0, then the order at p of each of the three numbers x − a, x − b

and x − c is nonnegative. At most one of them has positive order since the
difference of two of any of these divides ∆. Again, since their product is
a square in Q, this implies that the orders at p of these numbers are even.
Hence if x 6= a, b then u and v have even order.

The case n ≥ 0 and x = a or x = b is left to the reader.

Let R be a set of representatives for E(Q)/2E(Q). By the preceding
lemma R is a finite set. The set R (and possibly a finite number of additional
points in E(Q) to be explained in a moment) play the role of the point O in
the case of quadrics considered above. Namely, let P0 ∈ E(Q). Then we can
find an Q ∈ R such that P0 = Q0 + 2P1 for some P1 ∈ E(Q). Again, we find
a Q1 ∈ R such that P1 = Q1 + 2P2 with a suitable P2 ∈ E(Q), and so forth.
Suppose that in each step the point Pj is of less complexity, say needs less
digits to be described, than its predecessor Pj−1. Then we may hope that
our descent procedure will end in the sense that Pn for some n is in a finite
set S of very simple points. Hence P0 is a linear combination of the points in
R∪S, which solves the problem of determining E(Q). That the group E(Q)
is finitely generated is indeed the case for any elliptic curve over Q; this is
Mordell’s theorem which we shall prove in the next sections following exactly
the ideas sketched in this paragraph. The complexity of points in E(Q) will
of course be measured using a height function.

For curves of genus strictly greater than 1 the situation is completely dif-
ferent from the genus 0 and 1 case. Here one has Mordell’s conjecture, which
was proved by Faltings (for another proof, based on Faltings’, but shorter,
more self contained and using the theory of heights instead of arithmetic
intersection theory, see [Bomb]).
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Theorem 2.4. (Mordell-Faltings) For a projective curve C/Q with genus
≥ 2 the set C(Q) of its rational points is finite.

Thus, for curves of genus 2 the problem is too find good a priori upper
bounds for the height (to be properly defined in some sense) of its rational
points.

2.4 Basic facts about elliptic curves

This section is still incomplete. To complete the logical thread of this second
part the following topics would have to be reviewed: group law — E(K) —
K(P)— Weierstrass form — action of Galois [m] is surjective — affine and

projective form — K(E) = maps onto P1 — deg(f) — Ẽ — E as Jacobian
of itself

2.5 Heights on elliptic curves

We fix for this section an elliptic curve E defined over a number field K,
which we suppose always to be given in Weierstrass form

E : y2 = x3 + Ax + B, (A,B ∈ K)

As height H0(P ) of a point P ∈ E, say with homogeneous coordinates [x :
y : z] in a number field L, we may consider the height of P considered as
point of the projective plane P2, i.e.

H0(P ) =
∏

v∈PL

max(|x|v, |y|v, |z|v)1/[L:Q].

Another possibility would be to view x as a function from E onto P1, and
to take Hx(P ) := H(x(P )) as the height of P , where H(x(P )) is the height
of x(P ) as point of P1. Or, more generally, we could take any nonconstant
function f ∈ K(E), consider it as function onto P1 and take Hf (P ) :=
H(f(P ) as height function.

However, as it turns out, all these possibilities are essentially equivalent.
Also, notations become more natural if one uses additive notation, i.e. if one
uses the logarithmic heights

hf (P ) :=
1

deg f
log H(f(P )).

The reason for normalizing be the factor 1/ deg f will become clear in a
moment.
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Theorem 2.5. Let f, g ∈ K(E) be nonconstant functions on E. Then, for
every ε > 0, there are constants C1, C2 > 0 such that

C1Hf (P )−ε ≤ Hf (P )1/ deg f

Hg(P )1/ deg g
≤ C2Hf (P )+ε

for all P . Or, using logarithmic heights, for every ε > 0, there is a constant
C such that

|hf (P ) − hg(P )| ≤ C + εhf (P )

for all P ∈ E.

Proof. It is easy to check that the last inequality defines an equivalence
relation on the set of all functions hf with f running through the non constant
elements of K(E). Hence it suffice to prove the last inequality for some
specific choice of g and arbitrary f . We choose g = x. Moreover, we assume
also that f is even. For the general case we refer the reader to [Weil] (or
[Lan1], Ch. 4, Cor. 3.5). Here we call f even if f(−P ) = f(P ). For even f
the desired inequality is in fact true even for ε = 0.

Now f is a rational function in x and y, say f = p(x, y)/q(x, y), with
two polynomials p, q ∈ Q[X,Y ]. Since y2 is a polynomial in x we can even
write f = (p1(x) + yp2(x))/(q1(x) + yq2(x)) with polynomials pj, qj ∈ Q[X].
Also, we may assume that the numerator and denominator are relatively
prime. Then they are unique up to multiplication by constants. But then
we observe, on using that y is an odd function, i.e. y(−P ) = −y(P ), that f
can only be even if p2 = q2 = 0.

Hence f = r ◦ x, where r is the rational function r : P1 → P1 given by
r(t) = p1(t)/q2(t). Since any such rational function is a morphism (in the
sense explained in section 2.2), the theorem for f and g = x now follows from
Theorem 2.3: there exists constants C1, C2 > 0 such that

C1H(x(P ))deg r ≤ H((r ◦ x)(P ))deg r ≤ C2H(x(P ))deg r.

Using deg f = 2 deg r we obtain the desired inequality.

The heights hf possess a striking property, which we shall use to derive
a canonical height from them by a procedure analogous to the one which led
us to the definition of the Mahler measure.

Theorem 2.6. Let f ∈ K(E). Then there is a constant C such that

|hf (P + Q) + hf (P − Q) − (2hf (P ) + 2hf (Q))| ≤ C

for all P,Q ∈ E.
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Proof. It suffices to prove this identity for some particular function f . The
general result follows then from the preceding theorem. For f we choose the
coordinate function x.

For the proof we look at the following diagram:

E × E
φ−−−→ E × E

x×x

y x×x

y

P1 × P1 −−−→ P1 × P1

ι

y ι

y

P2
φ

−−−→ P2

Here we use

φ : (P,Q) 7→ (P + Q,P − Q),

ι : ([x : y], [x′y′]) 7→ [yy′, xy′ + x′y, xx′′],

φ : [a : b : c] 7→ [b2 − 4ac : 2b(Aa + c) + 4Ba2 : (c − Aa)2 − 4Bab].

(Here A,B are the coefficients of the Weierstrass equation defining E.) It is
not completely obvious, though straightforward, to check that the diagram
is commutative and that φ is a morphism (see section 2.2).

Moreover, we leave it as an exercise to verify that there exist constants
C1, C2 > 0 such that

C1 ≤
H(A)H(B)

H(ι(A,B))
≤ C2

for all P,Q ∈ P1.
We use h(A) := log H(A) for A ∈ Pn and H denoting the height on Pn.

Finally, for any two real valued functions α, β on E × E we write α ≈ β if
|αβ| is bounded on E × E. We then have

hx(P + Q) + hx(P − Q) = h(x(P + Q)) + h(x(P − Q))

≈ h(ι(x(P + Q), x(P − Q)))

= h(φ ◦ i(x(P ), x(Q)))

≈ 2h(ι(x(P ), y(Q))) ≈ 2h(x(P )) + 2h(x(Q)).

Here, for the last but not least identity we used Theorem 2.3 and that the
degree of φ is 2. This proves the desired estimates.

We now define the canonical height (or Néron-Tate) height of a point P
on E by

h(P ) = lim
k

1

4k
hf (2

kP ).
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If we right n for 2k and if we use that E[n] consists of exactly n2 points, then
h(P ) can be viewed more suggestively as the limit of the sequence

1

n2
hf

( ∑

Q∈E
nQ=P

Q
)
.

This is exactly the kind of formula (written additively) which we used to
define the Mahler measure. In fact, it could be shown that, instead of powers
of 2, we can take powers of any arbitrary nonnegative integer for obtaining
the same limit.

Theorem 2.7. The limit defining h(P ) converges uniformly in P . It does
not depend on the choice of f . There is a constant C such that

|h(P ) − hf (P )| ≤ C

for all P ∈ E.

Proof. By the last theorem, setting Q = P , we obtain that

|hf (2P ) − 4hf (P )| ≤ C

for all P with a constant independent of P . We use this to show that
4−kh(2kP ) is a Cauchy sequence uniformly in P . Indeed, if m > n then,
using the above estimate, we obtain

|4−mhf (2
mP ) − 4−nhf (2

nP )| =
m−1∑

k=n

|4−(k+1)hf (2
k+1P ) − 4−khf (2

kP )|

≤
m−1∑

k=n

C

4k+1
<

4C

3 · 4n+1
,

which tends to zero, independent of P , for m,n → ∞.
The last assertion of the theorem follows similarly by writing

h(P ) − hf (P ) =
∞∑

k=0

4−(k+1)hf (2
k+1P ) − 4−khf (2

kP ).

If g is another nonconstant function on E, then, for each ε > 0, we have
|hf (P )− hg(P )| ≤ εhf (P ) + C with a constant independent of P . Replacing
here P by 2kP , dividing by 4k and letting k tend to infinity shows that the
difference of the limits of 4−khg(2

kP ) and 4−khf (2
kP ) is bounded by ε times

the second limit. Since this is true for all ε > 0 the two limits must be
equal.
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Immediately from the definition we obtain that h is an even function and
that h(0) = 0, as follows easily on taking x for f in the definition of h.
Similarly, one obtains

Theorem 2.8. For each σ ∈ Gal(Q/K) and each P ∈ E one has h(P σ) =
h(P ).

Proof. This follows on writing h(P ) as limit of log H(x(nP ))1/n (n = 2k), and
using H(x(P σ)) = H(x(P )σ) = H(x(P )), where the last identity is obvious
from the very definition of the height H on P2.

Theorem 2.9. For each constant C and each integer d, the set

{P ∈ E |h(P ) ≤ C, [Q(P ) : Q] ≤ d}

is finite.

Proof. Since hx(P ) ≤ h(P ) + C for some constant C it suffices to prove the
theorem with h replaced by hx. But this is an immediate consequence of the
fact that the map P 7→ x(P ) is two-to-one, and the fact that there is only
a finite number of algebraic numbers with height and degree below a fixed
bound (see section 1.4).

An important property is that the height is a quadratic form as is already
suggested by the quasi-parallelogram law for the hf as stated in Theorem 2.6

Theorem 2.10. The map

〈 , 〉 : E × E → R, 〈P,Q〉 := h(P + Q) − h(P ) − h(Q)

is Z-bilinear. In particular, one has h(nP ) = n2h(P ) for all integers n and
all P .

Proof. By writing in Theorem 2.6 nP and nQ for P and Q, dividing by n2

and letting n tend to infinity we obtain the so-called parallelogram law

h(P + Q) + h(P − Q) = 2h(P ) + 2h(Q).

From this the bilinearity follows by a simple algebraic manipulation. Since
the pairing 〈 , 〉 is symmetric it suffices to prove

〈P + Q,R〉 = 〈P,R〉 + 〈Q,R〉.

It is straightforward to check that this is equivalent to

h(P +Q+R)−h(P +Q)−h(P +R+)−h(Q+R)+h(P )+h(Q)+h(R) = 0.
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But this follows indeed from the parallelogram law (and using the evenness
of h) as follows. Applying four times the parallelogram law gives

h(P + Q + R) + h(P + Q − R) − 2h(P + Q) − 2h(R) = 0

h(P − Q + R) + h(P + Q − R) − 2h(Q − R) − 2h(P ) = 0

h(P − Q + R) + h(P + Q + R) − 2h(P + R) − 2h(Q) = 0

2h(Q + R) + 2h(Q − R) − 2h(Q) − 2h(R) = 0,

and taking the alternate sum of these four equations is exactly the desired
identity..

The second assertion follows from 2h(P ) = h(P ) + h(−P )− h(P − P ) =
−〈P,−P 〉 = 〈P, P 〉.

As direct generalization of Kronecker’s theorem one has

Theorem 2.11. One has h(P ) = 0 if and only if P is a torsion point.

Proof. By the preceding theorem we clearly have 〈P, P 〉 = 0 if nP = 0 for
some integer n ≥ 1. Conversely, if h(P ) = 0, then h(nP ) = 0 for all P . If
L/K is a number field such that P ∈ E(L), then nP ∈ E(L) for all n. But
the set of all Q ∈ E(L) with h(Q) = 0 is finite as we saw above. Hence P
must have finite order.

Since the set of points on E with height below a given bound affine
coordinates in a given number field L is finite, we see that in particular
E(K)tor is finite. However, one can say much more. The theorem of Mazur []
says that, for an E defined over Q the subgroup E(Q)tor is always isomorphic
to one of a given list of fifteen abelian groups. It is conjectured that this is
true for all number fields K in the following sense: For each number field K
there is a constant N such that E(K)tor, for any elliptic curve E defined over
K, has not more than N points. By a theorem of Manin [Mani] one knows
at least that for any K and any prime number p there exists a constant N
such that the p-part of E(K)tor, for any E/K, is bounded to above by N .

From the last theorem we also obtain

Theorem 2.12. The height pairing 〈 , 〉 on E factors to a non-degenerate
pairing E/Etor × E/Etor → R.

Proof. Clearly 〈P,Q〉 = 0 for all Q if nP = 0 for some n ≥ 1. Conversely
〈P,Q〉 = 0 for all Q implies h(P ) = 0, and hence that P is a torsion point.

We conclude this section with another result showing that the canonical
height deserves its name.
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Theorem 2.13. Let h′ be a real valued function on E which satisfies the two
following properties:

1. There exists an integer n ≥ 2 such that h′(nP ) = n2h′(P ) for all P ∈ E.

2. There exists a function f ∈ E(K) and a constant C such that |h(P )−
hf (P )| ≤ C for all P ∈ E.

Then h′ = h.

Proof. From the second assumption we see that |h′(P ) − h(P )| ≤ C ′ for all
P with a suitable constant C ′ (not depending on P ). But then from the first
assumption h′(nkP ) = n2kh′(P ) for all k ≥ 0, and hence

|h′(P ) − h(P )| =
1

n2k
|h′(nkP ) − h(nkP )| =≤ C ′

n2k

for all k, whence, for k → ∞, we obtain h′(P ) = h(P ).

2.6 Infinite descent on elliptic curves

In this section, using the theory of heights on elliptic curves, we can finally
make precise the infinite descent procedure described at the the end of section
2.3. For this let E be a given elliptic curve defined over the number field K.
We shall prove in the next section, that E(K)/mE(K) is a finite group for
each integer m ≥ 2. As already indicated before this, together with the
infinite descent procedure, implies that E(K) is a finitely generated group.
The descent procedure is effective, i.e. it shows how to calculate generators for
E(K) (provided we we can compute a set of representatives for the quotient
E(K)/mE(K)).

Let R be a system of representatives for E(K)/mE(K) for a fixed m ≥ 1.
For this set of representatives let

C := 2 max{h(P ) |P ∈ R}.

We then have, for all P ∈ E and all R ∈ R.

h(P + R) = 2h(P ) − h(P − R) + 2h(R) ≤ 2h(P ) + C.

Let now P ∈ E(K). We define a sequence of points Pl ∈ E and Ql ∈ R

by P0 = P and for l ≥ 1

mPl = Pl−1 − Ql−1.
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Then

h(Pl) ≤
1

m2
(2h(Pl−1) + C)

≤ 2l

m2l
h(P ) + C(

1

m2
+

2

m4
+

4

m6
+ · · · + 2l−1

m2(l−1)
)

≤ 2l

n2l
h(P ) +

C

m2 − 2
.

Finally, let R0 be the set of all Q ∈ E(K) with h(Q) ≤ C/(m2 − 2). This is
a finite set. Since the set of all Q with h(Q) ≤ C/(m2 − 2) + .1 is also finite,
we can find a ε > 0 such that R0 coincides with the set of all Q ∈ E(K) with
h(Q) ≤ C/(m2 − 2) + ε.

But then we conclude that Pl ∈ R0, if l is large enough. In other words
the set R∪R0 is a set of generators for E(K). The set R0 can be calculated
by a systematic search.

2.7 The Mordell-Weil theorem

Again, throughout this section, E denotes an elliptic curve defined over a
number field K. Moreover we fix an integer m > 0. The purpose of this
section is to prove

Theorem 2.14. (Weak Mordell-Weil theorem) The group E(K)/mE(K) is
finite.

Together with the infinite descent procedure of the last section this implies
then strong Mordell-Weil theorem

Theorem 2.15. The group E(K) is finitely generated.

The proof of the so-called weak Mordell-Weil theorem has actually noth-
ing to do with heights, but uses what is called Kummer theory for ellip-
tic curves. However, we include it here for the sake of completeness. The
Mordell-Weil theorem was actually first proved by Mordell for the case of
an elliptic curve over Q, was before already conjectured by Poincaré, and
later generalized to arbitrary K (and arbitrary abelian varieties) by Weil,
based on work of Siegel who introduced the powerful tool of heights into the
study of diophantine problems. The proof uses the two fundamental finite-
ness theorem of algebraic number theory, the finiteness of class numbers and
Dirichlet’s unit theorem.

We shall show first that we can enlarge K without restriction of generality.
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Lemma 2.3. Let L/K be a finite extension. If E(L)/mE(L) is finite, then
so is E(K)/mE(K).

Proof. Let N be the kernel of the natural map

E(K)/mE(K) → E(L)/mE(L);

thus N = (E(K) ∩ mE(L))/mE(K). We have to show that N is finite.
For each C ∈ N pick a P ∈ C, and then a Q ∈ E such that P = mQ. we

set
λC : Gal(L/K) → E[m], λC(σ) = Qσ − Q.

Note that indeed λC(σ) ∈ E[m] since mQσ = P σ = P = mQ. If λC = λC′ ,
say C ′ = P ′ + mE(K) with associated mQ′ = P ′, then Q − Q′ is invariant
under all σ ∈ Gal(L/K), and is hence in E(K). But this means P − P ′ ∈
mE(K), i.e. C = C ′. Thus the map C 7→ λC is injective; its image being
finite implies the lemma.

The proof, being a little bit puzzling at the first glance, has a very natural
explication in term of Galois cohomology. We shall explain this below (see
section 2.8).

In the following we can hence assume, by enlarging K if necessary, that

E[m] ⊂ E(K).

Note that this implies in particular the following: If Q ∈ E is such that mQ ∈
E(K), then L := K(Q) is a Galois extension of K. Indeed, if σ : L → C is
an embedding leaving K invariant, then Lσ = K(Qσ). But Qσ ∈ Q + E[m]
(since m(Qσ) = (mQ)σ) = mQ), and hence Qσ ∈ L, i.e. Lσ = L.

We set

L := K(Q |QP ∈ E(K))/qquadG := Gal(L/K).

Then L is a Galois extension of K (a priori possibly infinite). We have a
map

E(K) × G → E[m],

given by
(P, σ) 7→ Qσ − Q,

where Q is any point of E such that mQ = P . (We recall that such a point
Q always exists since multiplication by m is a nonconstant morphism.)

Note that this definition does not depend on a particular choice of Q since
any two inverse images of P under multiplication by m differ by an element
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of E[m], which, as subset of E(K), is invariant under G. The map is actually
bilinear. It is linear in the right argument since

Qστ = (Qσ − Q)τ + (Qτ − Q) = (Qσ − Q) + (Qτ − Q),

where we used that Qσ − Q is in E[m] and hence stable under G. It is
obviously linear in the first argument.

The left kernel of the pairing (i.e. the subgroup of P ∈ E(K) such that
〈P,G〉 = 0) clearly contains mE(K); in fact, it equals mE(K). Indeed, if
a Q ∈ E with P := mQ ∈ E(K) satisfies Qσ = Q for all σ ∈ G, then
Q ∈ E(K), i.e. P = mQ ∈ mE(K). Thus the above pairing factors through
a pairing

E(K)/mE(K) × Gal(L/K) → E[m],

the so-called Kummer pairing, which is left non-degenerate. Or, to state this
differently, the associated homomorphism

E(K)/mE(K) → Hom(G,E[m])

is injective. For proving the weak Mordell theorem it thus suffices to show
that L is a finite extension of K. Hence, we start now to investigate more
closely the field L.

First of all we note that the Kummer pairing is even perfect. Namely,
for a fixed σ, let Qσ = Q for all Q with mQ ∈ E(K). This means that
σ leaves invariant L, and hence equals 1. Hence G embeds injectively into
Hom(E(K)/mE(K), E[m]), In particular, L is abelien with exponent m.

We now assume that E is given by a Weierstrass equation of the form
y2 = x3+Ax+B with A and B being integral algebraic integers (in K). This
is no restriction of generality since for each pair A,B ∈ K we can find an
integer N > 0 such that N4A and N6B are integral, and we may the consider
y2 = x3 + N4AX + N6B, which is isomorphic to E via (x, y) 7→ (N2x,N3y).
We use ∆ for the discriminant of E, i.e.

∆ = −4A3 − 27B2.

Under this assumption we then have

Lemma 2.4. Let p be a prime ideal of K not dividing the discriminant ∆
of E. Then L is not ramified at p.

Proof. For P ∈ E(K) let M = K(Q ∈ E |mQ = P ). It suffices to show that
M is unramified at p (since L is is the compositum of all such M).

Indeed let Dp be the decomposition group of p i.e. the subgroup of all
σ ∈ G leaving invariant one prime ideal (and hence all prime ideals) P of M
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above p. Let Ip be the inertia group at p, i.e. the subgroup of σ ∈ Dp such
that xσ ≡ x mod P for all x ∈ O, where O is the ring of integers of M . That
M is not ramified at p is equivalent to the statement that Ip is trivial.

For proving this we consider, Ẽ, the curve obtained from E by reducing
modulo P. More precisely we consider the following: If P = [x : y : z] is a
point of E(M), then we may assume that x, y, z are in O, and at least one
homogeneous coordinate is not divisible by P (indeed take any homogeneous
coordinates of P in M and divide by the the one with smallest P-order; since
the new homogeneous coordinates are P-integral, we can find an integer N 6=
0 and not divisible by P such that multiplication by N yields homogeneous
coordinates in O). We then set ρ(P ) := [x̃ : ỹ : z̃], where the tilde denotes the
class modulo P. This does not depend on the special choice of homogeneous
coordinates. The association P 7→ P̃ thus defines a map

E(LP ) → Ẽ(O/P) = {[x̃ : ỹ : z̃] | y2z ≡ x3 + Axz2 + z3 mod P}.

It is easy to see that E(O/P) is a group (defined analogous to the group
structure on E(K)), and that the reduction map is a group homomorphism.
Moreover, it is a fundamental fact that the restriction of the reduction map
to

E[m] → Ẽ(O/P)

is injective if the discriminant of E is not divisible by P (or, equivalently, not
divisible by p). This is obvious for m = 2 (the case, which actually suffices
to deduce the Mordell-Weil theorem). In this case [0 : 1 : 0] and [αi : 0 : 1]
(i = 1, 2, 3), with αi denoting the roots of f(x) := x3 + Ax + B = 0, are the
points of E[2] (recall that αi ∈ K since E[2] ⊂ E(K)). Obviously they are in
fact incongruent modulo P if and only if P does not divide the discriminant
∆ =

∏
i6=j(αi − αj)

2. For general m see e.g. [Sil1], VII Proposition 3.1(b).
Let now σ ∈ Ip. Then

ρ(Qσ − Q) = ρ(Qσ) − ρ(Q) = 0

for all Q ∈ E(M). On the other hand side, Qσ −Q ∈ E[m] for mQ = P . By
the injectivity of the last map hence Qσ − Q = 0. Thus σ is the identity on
M , showing that Ip is trivial and thus proving the theorem.

Our information about L obtained so far suffices to prove that is is finite
over K. One has the following general theorem:

Theorem 2.16. Let L be an abelien extension of K with exponent m, and
which is ramified only at a finite number of primes. Then L is a finite
extension of K.
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Proof. Let S be the set of prime ideals of K, where L is ramified. By en-
larging S we can assume that all prime ideals dividing m are contained in S.
Moreover, by again enlarging if necessary, we can even more assume that the
ring R of S-integers in K is a principal ideal domain. Indeed, let h be the
class number of K, pick prime ideals pj (1 ≤ j ≤ h) which represent the ideal
classes of the class group of K, and adjoin to S all prime ideals conjugate
to one of these prime ideals; clearly, pn

j R = R for all integers n (if p ∈ pj is
a rational prime then p−1 ∈ R). But then, if M ⊆ R is an ideal of R (and
hence M ∩ O is an ideal of the ring of integers O of K), then, on writing
M ∩ O as M ∩ O = α

∏
j p

nj

j with suitable integers nj and suitable α ∈ O,
shows (M ∩O)R = αR. But (M ∩O)R = M (since, for each α ∈ M , we can
find a rational integer N ∈ R, only divisible by prime ideals in S, such that
Nα ∈ O; but then α ∈ (M ∩ O)R since 1/n ∈ R).

Finally, we leave it to the reader to verify that, by adjoining mth roots
of unity to K and L, one can assume without loss of generality that K
contains all mth roots of unity. Or else the reader can restrict to the case
of m = 2, where this is automatically satisfied, and which suffices for the
proof Mordell-Weil theorem (and which in turn implies the weak version for
arbitrary m ≥ 2 anyway).

The main theorem of Kummer theory states that L is then a subfield of
K( m

√
a | a ∈ K) ([Lan2], VIII, §8) or any other reasonable text book including

sections on Galois theory). Again, it is a straight-forward exercise in Galois
theory to verify this statement for m = 2.

To begin with the proper proof of the desired theorem, we remark first
of all that, for a ∈ K, the field K( m

√
a) is unramified at a prime p 6 |m if and

only if m| ordp(a) (Exercise).

Thus, if we let T be the set of classes a(K∗)m in K∗/(K∗)m such that
m| ordp(a) for all p 6∈ S, then

L ⊆ K( m
√

a | (aK∗)m ∈ T ).

We thus want have to show that T is finite. For this let R∗ be the group of
units of R. Clearly, ordp(a) = 0 for all p 6∈ S. Hence we have the natural
map

R∗ → T.

We claim that it is surjective (for our special choice of R). Indeed, let a ∈ K∗

represent an element of T . Then the (fractional) R-ideal aR is the m th power
of an R-ideal (consider the O-prime ideal decomposition of aO, multiply by
R, and use that pR = R for any p ∈ S). But R is a principal ideal domain,
and hence aR = bmR for some b ∈ K, whence a = bme for some unit e ∈ R∗,
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proving the surjectivity of our map. This map factorizes then to a surjective
map R∗/(R∗)m → T .

By Dirichlet’s S-unit theorem R∗ is finitely generated (see [Lan3] V§1),
hence R∗/(R∗)m, and thus T too, is finite.

2.8 Supplements

The Kummer pairing E(K)/mE(K) × G → E[m] can be interpreted as
injection

δE : E(K)/mE(K) → H1(G,E[m]).

Here H1(G,E[m]) is the first cohomology group of G := Gal(Q/K) acting
on E[m]. Recall that, for any abelian group M which is a G-right module,
this is the group

H1(G,M) =
{c : G → M | c(στ) = c(σ)τ + c(τ)}

{c : G → M | ∃m ∈ M ∀σ ∈ G : c(σ) = mσ − m} .

If E[m] ⊂ E(K), as we assumed, then H1(G,E[m]) is nothing else than the
group of homomorphisms G → E[m]. Moreover, the map δE is nothing else
as the map induced by the first connecting homomorphism, usually denoted
δ, in the long exact sequence of homology groups

0 → E[m](K) → E(K)@ > ×m >> E(K)@ > δ >> H1(G,E[m])

associated to the short exact sequence of G-modules

0 → E[m] → E@ > ×m >> E → 0.

Note that the map δE exists for arbitrary E defined over K, not just for
those with E[m] ⊂ E(K). Along these lines the given proof of the Mordell
theorem may be reinterpreted and reanalyzed in terms of Galois cohomology.

The approach to the weak Mordell theorem in section 2.3 using the map
E(Q)/2E(Q) → (Q∗/Q∗)2, can easily be generalized to arbitrary number
fields (see [Lan1], V, §1), and it can also be generalized to arbitrary m (see
e.g. [Sil1], X, Theorem 1.1). It is related to the second proof as follows.

By Hilbert’s theorem 90 (which states H1(Gal(Q/Q), Q
∗
) = 0) we know

that any homomorphism

α : Gal(Q/Q) → {±1}

is of the form α(σ) =
√

a
σ
/
√

a with a suitable a ∈ Q∗. Hence we have an
isomorphism

δK : Q∗/Q∗2 → Hom(Gal(Q/Q), {±1}).
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Suppose, we have a perfect pairing e2 : E[2] × E[2] → {±1}. Then we can
define a unique map ν such that the following diagram is commutative:

E(Q)/2E(Q) × E[2]
ν−−−→ Q∗/Q∗2

δR×1

y δK

y

Hom(G,E[2]) × E[2] −−−→
e′
2

Hom(G, {±1})

Here (G = Gal(Q/Q), ) and e′2 is the map induced by e2, i.e. e′2(c,Q)(P ) =
e2(c(P ), Q) for all P,Q ∈ E[2]. Choosing a basis P1, P2 for E[2], we then
obtain an injection

γ : E(Q)/2E(Q) → (Q∗/Q∗2)2, P 7→
(
ν(P, P1), ν(P, P2)

)
.

Now, for e2 one may take the so-called Weil pairing, which is defined as

e2(P,Q) = gQ(X + S)/gQ(X),

where gQ ∈ K(E) is any function with divisor

div(g) =
∑

2R=Q

(R) − 4(O),

and where X is any point of E such that gQ(X + S) and gQ(X) are both
different from 0 and ∞ (see any text book on (algebraic) elliptic curves) If
Q = (α, 0) in affine coordinates, then it is not hard to check that g2

Q(V ) =
x(2V ) − α for all V ∈ E (after suitably normalizing gQ). Using this one can
finally verify that γ is the map used in section 2.3.

2.9 Local decomposition

As in the case of algebraic numbers the canonical height on an elliptic curve
has a decomposition into local contributions. In this section we describe the
corresponding formulas. Again, we assume throughout that E is given by an
equation of the form

E : y2 = x3 + Ax + B (A,B ∈ K),

where, as usual, K denotes a number field.
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2.9.1 The Green’s function of an elliptic curve

We start by describing the archimedian contributions. It is a well-known
and classical fact that there exist a lattice in C of the form L = Zτ + Z with
Im(τ) > 0 and a complex number λ 6= 0 such that the map

z 7→
{

[℘(τ, z) : 1
2
℘′(τ, z) : 1] if z 6∈ L;

[0 : 1 : 0] if z ∈ L

defines a surjective group homomorphism

exp : C → E ′(C)

with kernel L, where E ′ is the elliptic curve

E ′ : y2 = x3 + λ4Ax + λ6B.

Here ℘(τ, z), for fixed τ , as function of z, is the classical Weierstrass ℘ func-
tion associated to the lattice L, and ℘′(τ, z) is its derivative with respect to
z. Thus, ℘(τ, z) is meromorphic in C with poles only in L, periodic with
respect to L, and

℘(τ, z) =
1

z2
+ O(z) (z → 0).

These three properties uniquely determine ℘(τ, z) (since the difference of any
two such functions would be holomorphic on all of C, periodic under L, hence
bounded on C, hence constant by the maximum principle, and finally equal
to 0 because its Taylor development at z = 0 starts with positive powers
of z). We use here the name exp because this is natural when viewing
E(C) as Lie group. Note that exp is continuous, when we equip E ′(C)
with the natural topology (inherited from the natural quotient topology of
P2(C) = (C3 \ {0})/C∗). To check this at points in L write

[℘(τ, z) :
1

2
℘′(τ, z) : 1] = [

℘(τ, z)
1
2
℘′(τ, z)

: 1 :
1

1
2
℘′(τ, z)

],

an let z tend towards a point in L.
Clearly E ′ and E are isomorphic (as elliptic curves over C) via the map

(x, y) 7→ (λ2x, λ3y). For the following we assume that E = E ′ (and hence
λ = 1). Of course, then A,B are not necessarily algebraic numbers.

One can even more introduce a natural structure of Riemann surface on
C/L and on E(C) so that the map C/L → E(C) becomes an isomorphism
of Riemann surfaces. The map exp induces an isomorphism of fields

exp∗ : K(E)C → M(L),
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where K(E)C is the field if algebraic functions on E, considered as algebraic
curve over C, and where M(L) is the field of meromorphic functions on C

which are periodic with respect to L.
We use σ(τ, z) for the Weierstrass σ function associated to L. It is

uniquely characterized by the fact that, as function in z, it is odd and holo-
morphic on C, satisfies σ(τ, z) = z+O(z2) (z → 0), and its second logarithmic
derivative equals ℘(τ, z). Setting

q = e2πiτ , ζ = e2πiz,

one has the following explicit formula ([Skor], Appendix 1)

σ(τ, z) = e−2πi η′

η
(τ)z2 ζ1/2 − ζ−1/2

2πi

∏

n≥1

(1 − qnζ)(1 − qnζ−1)

(1 − qn)2
,

η(τ) = q1/24
∏

n≥1

(1 − qn).

(Here η′ is the ordinary derivative of η with respect to τ .) It is straight-
forward that the right hand side of this formula satisfies in fact all the listed
properties, which proves the existence of σ(τ, z) (and ℘(τ, z)) and, by the
uniqueness, the identity in question. We leave the details to the reader (or
see [Skor], Appendix 1). We cite without proof the following lemma (see)

Lemma 2.5.

(2πi)12η24(τ) = disc(x3 + Ax + B) = −(4A3 + 27B2).

Instead of in σ(τ, z), we are more interested in the so-called Siegel function

S(z) = q
1

12 ζ− 1

2 (ζ − 1)
∏

n≥1

(1 − qnζ)(1 − qnζ−1).

We suppress the dependence of τ . Note that S(z), considered as function
of z is nothing else but σ(τ, z), up to multiplication by trivial factors. The
important point is that S(z) has a nicer transformation law under L than
σ(τ, z). Namely, one has

Lemma 2.6.

S(z + 1) = −S(z), S(z + τ) = −q−
1

2 ζ−1S(z).

Proof. This can be verified by a straight-forward calculation.
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From this we deduce that

G(z) := e−π y2

v |S(z)|

is periodic with respect to L. Here y and v are the imaginary parts of z and
τ , respectively.

factors through a function on C/L. This function is Green’s function
associated to E. Its important property is

Theorem 2.17. Let f ∈ K(E)C, let D =
∑r

j=1 nj(Pj) (nj ∈ Z, Pj ∈ E(C))
its divisor, and let Pj = exp(zj) with suitable zj ∈ C. Then there exists a
constant c such that

|f(exp(z))| = c

r∏

j=1

G(z − zj)

for all z ∈ C.

Proof. The function

g(z) := f(exp(z))/
r∏

j=1

S(z − zj)
nj

is holomorphic on C and has no zeroes. From this it is easy to verify that

g̃(z) := log g(z) + π
1

v

r∑

j=1

nj Im(z − zj)
2

is harmonic (though G(z) itself, because of the factor e−πy/v, is not harmonic).
Note that

r∑

j=1

nj Im(z − zj)
2

is harmonic since D, as divisor of a function on K(E)C, satisfies deg D =∑r
j=1 nj = 0.
But g̃ is periodic with respect to L, hence bounded on C, and thus con-

stant by the maximum principle.

As corollary we obtain

Corollary 2.17.1.

|℘(z) − ℘(a)| = |∆| 16 G(z − a)G(z + a)

G(z)2G(a)2
.
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Proof. By the foregoing theorem we have, for fixed a and all z

|℘(z) − ℘(a)| = c
G(z − a)G(z + a)

G(z)2G(a)2

with a suitable constant c. Now, if we multiply by |z|2 and let z tend to 0,
then the left hand side tends to 1. For the right hand side the limit is

c · lim
z→0

|z|2
G(z)2

= c/(2π|η|2)2,

which proves the lemma.

We finally introduce the so-called Néron function on E(C)\{0} by setting

λ(P ) := − log G(z),

where P = exp(z) (this does not depend on a particular choice of z since
G(z) is periodic with respect to L.)

Theorem 2.18. The Néron function satisfies the following three conditions:

1. λ is continuous and is bounded on the complement of every open neigh-
bourhood of 0.

2. The limit limP→0

(
λ(P ) + 1

2
log |x(P )|

)
exists and is finite.

3. For all P,Q ∈ E(C) such that P,Q, P + Q,P − Q 6= 0 one has

λ(P + Q) + λ(P −Q) = 2λ(P ) + 2λ(Q)− log |x(P )−x(Q)|+ 1

6
log |∆|.

Moreover, λ is the only function on E(C) \ {0} satisfying these conditions.

Proof. Property (i) to (iii) follow immediately from the corresponding prop-
erties for − log G(z) on setting P = exp(z) and Q = exp(a), so that, in
particular x(P ) = ℘(τ, z).

For proving the uniqueness statement we note that the difference f of any
two functions satisfying the three properties can be continuously extended to
0 (by (ii)), is hence bounded on E(C) (by (i)), and satisfies the parallelogram
law

f(P + Q) + f(P − Q) = 2f(P ) + 2f(Q)

(by (iii)), by continuity even for all P,Q. In particular, f(0) = 0 (set P =
Q = 0), hence f(2P ) = 4f(P ) (set P = Q), and then f(2nP ) = 4nf(P ) for
all P and n. Letting n tend to infinity and observing that f(2nP ) remains
bounded it follows f(P ) = 0.
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If E ′ : y2 = x3 + A′x + B′ is an elliptic curve isomorphic to E, say
via α : (x, y) 7→ (a2x, a3y), we transfer λ to a function λ′ on E ′ by setting
λ′ = λ ◦ α. Note that the conditions (i) and (iii) remain literally valid for
the new function λ′ on E ′. Indeed, if we write x′(P ) for the first coordinate
function on E ′, then we have (x◦α)(P ) = a2x′(P ), whereas the discriminant
∆′ of E ′ is

∆′ = −(4A′3 + 27B′2) = −a12(4A3 + 27B2) = a12∆

(since A′ = a4A and B′ = a6B) Hence

log |x(α(P )) − x(α(Q))| − 1

6
|∆| = log |x′(P ) − x′(Q)| − 1

6
|∆′|.

Hence we can summarise by saying that on each elliptic curve E defined over
C, given by a Weierstrass equation with discriminant ∆, there is a unique
function λ : E(C) \ {0} → R which satisfies properties (i) to (iii).

The condition (iii) can be replaced by another one, which is technically
simpler to verify.

Theorem 2.19. Let E : y2 = x3 + Ax + B an elliptic curve defined over C.
Then the Néron function λ is the unique function λ : E(C) \ {0} → R which
satisfies conditions (i), (ii) of Theorem 2.18 and the condition:

(iii)’ For all P ∈ E(C) such that 2P 6= 0 one has

λ(2P ) = 4λ(P ) − log |2y(P )| + 1

4
log |∆|.

Proof. The proof that λ is uniquely determined by (i),(ii) and (iii)’ is exactly
the same as the uniqueness proof of the preceding theorem. In fact, all we
used from (iii) is that the difference f of any two Néron functions satisfies
f(2P ) = 4f(P ), which is already implied by (iii)’.

For proving (iii)’ we assume first of all as before that E(C) is the ho-
momorphic image under the exponential map exp with respect to a suitable
lattice L := Zτ + Z. Then, setting P = exp(z) (so that 2P = exp(2z) and
1
2
℘′(τ, z) = y(P )) we have to prove

|℘′(τ, z)| = |∆| 14 G(2z)

G(z)4
.

But this follows immediately from Theorem 2.17 on comparing divisors on
both sides (note that G(2z) = 0 if and only if z ∈ 1

2
L), which proves the

identity up to multiplication by a constant, and by multiplying by |z|3 and
letting z tend to 0.

Finally one proves as for condition (iii) that (iii)’ remains literally valid
for the Néron function on an arbitrary elliptic curve (over C) in Weierstrass
normal form.
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2.9.2 The Néron functions associated to places

In this section we return again to an elliptic curve E defined over a number
field K, say

E : y2 = x3 + Ax + B, ∆ = −(4A3 + 27B2), (A,B ∈ K)

If v is a place of (i.e. equivalence class of valuations on) K, then we use
‖.‖v for that valuation in v, whose restriction to Q equals the ordinary p-adic
valuation | · |p for some prime number p or the usual archimedean absolute
value on Q. We then have, with a suitable integer nv ≥ 1, the identity

|α|v = ‖α‖nv

v

for all α ∈ K. We use Kv for the v-adic completion of K, and we the same
symbol for the extension of ‖ · ‖v to Kv.

Generalising the theorem of the last section one can prove:

Theorem 2.20. Let v be a place of K. Then there exists a unique function
λv : E(Kv)\{0} → R satisfying properties (i) to (iii) of Theorem 2.18 with C

replaced by Kv and the complex absolute value replaced by ‖·‖v. The function
λv can also be characterised as the unique real-valued function on E(Kv)\{0}
which satisfies conditions (i), (ii) and condition (iii)’ (of Theorem 2.19 with
the same replacements as before). Assume that A and B are integral. Then,
for all but finitely many v one has

λv(P ) =
1

2
max(0, log ‖x(P )‖v)

for all P ∈ E(Kv) \ {0}.

The function λv is called the local Néron function on E associated to
v. The uniqueness of λv follows literally as in the proof of Theorem 2.18.
If L is an extension of K, and if w is a place of L over v, then, since the
restriction of λw to E(Kv) \ {0} satisfies (i) to (iii), whence λw(P ) = λv(P )
for P ∈ E(K) \ {0}.

If v is archimedean, i.e. if Kv = C or Kv = R, then the existence of
λv is ensured by Theorem 2.18. We shall not give the complete proof of
the preceding theorem in the case of a non-archimedean v, but refer to the
literature (cf. [Sil2]).

Here we content ourselves to prove the following theorem, which implies
a part the preceding one for non-archimedean v where E has good reduc-
tion (and a little bit more). To state this theorem we need some notation.
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Let v ∈ PK non-archimedean and assume that A and B are v-integral (i.e.
‖A‖v, ‖B‖v ≤ 1). Let

Ov = {x ∈ Kv | ‖x‖v ≤ 1}, mv = {x ∈ Kv | ‖x‖v < 1}.

Denote by Ẽ the curve over the field Ov/mv obtained from E by reducing A
and B modulo the maximal ideal mv. We have the map (in fact a homomor-
phism)

E → Ẽ, P 7→ P̃

obtained by reducing modulo mv (as explained in the proof of Lemma 2.4).
We set

E0(Kv) = {P ∈ E(Kv) | P̃ is a nonsingular point of Ẽ}.

It can be proved that this is a subgroup of E(Kv) (see e.g. [Sil1], VII §2).

Theorem 2.21. Let v ∈ PK non-archimedean, and assume that A and B
are v-integral. Then

λv(P ) =
1

2
max(log ‖x(P )‖v, 0) − 1

12
log ‖∆‖v

for all P ∈ E0(Kv) \ {0}.

Proof. Denote the function on E(Kv) \ {0} defined by the right hand side
of the desired formula by λ. Clearly, λ satisfies properties (i) and (ii) of
the local Néron function. Writing |x| for ‖x‖v we shall show the duplication
formula

λ(2P ) = 4λ(P ) − log |2y(P )| + 1

4
log |∆|

for all P ∈ E0(Kv) \ {0}.
This than implies that the restriction of λv to E0(Kv) \ {0} equals λ

by the usual argument. Indeed, the difference f = λ − λv extends to a
continuous and bounded function on all of the subgroup E0(Kv) of E(Kv).
One has f(2P ) = 4f(P ), by continuity even if P = 0 or 2P = 0. But then
f(P ) = 4−nf(2nP ) for all n, which implies f(P ) = 0 since f is bounded.

To prove the duplication formula for λ we note first of all (writing x1 =
x(P ) and y1 = y(P )) that

x(2P ) = −2x1 +
Fx(P )2

Fy(P )2
=

x4
1 − 2Ax2

1 − 8Bx1 + A2

4y2
1

=:
φ

ψ
,

where F (x, y) = y2 − (x3 + Ax + B) and Fx, Fy denote partial derivatives.
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Hence, the duplication formula is equivalent to

1

2
max(log |φ| − log |ψ|, 0) = 2 max(log |x1|, 0) − log |2y1|,

which, using |ψ|2 = |2y|, can be written as

max(|φ|, |ψ|) = max(|x1|4, 1)

Assume, first of all that |x1| > 1. Then, using that A,B are v-integral,
we have |φ| = |x1|4 and |ψ| = |4y2

1| = |4(x3
1 +Ax1 +B)| = |4x3

1| < |x1|4 = |φ|.
Hence the desired identity is true.

Now assume that x1 is v-integral. Since A,B are v-integral y1 is then v-
integral too, in particular, we have P̃ = [x1 + mv : y1 + mv : 1]. We shall now

use that P̃ is a non-singular point of the reduced curve Ẽ. This is equivalent
to |Fx(x1, y1)| = 1 or |Fy(x1, y1)| = 1. Since

φ = Fx(P )2 − 2x1Fy(P )2 ψ = Fy(P )2

this implies that indeed max(|φ|, |ψ|) = 1.

Note that in the case of good reduction, i.e. if ‖∆‖v = 1, we have the
explicit formula

λv(P ) =
1

2
max(log ‖x(P )‖v, 0),

and that we have actually proved that the right hand side satisfies the defining
conditions (i), (ii) and (iii)’ of the local Néron function at v.

2.9.3 The decomposition formula

Using the local Néron functions λv we can finally give the desired local de-
composition of the canonical height h.

Theorem 2.22. Let E be an elliptic curve defined over the number field K,
let h be the canonical height on E, and, for each v ∈ PK let λv be the local
Néron height function associated to v. Then

h(P ) =
1

[K : Q]

∑

v∈PK

λv(P )

for all P ∈ E(K) \ {0}.
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Proof. Note that by Theorem 2.20 for each P ∈ E(K), P 6= 0 we have
λv(P ) = 1

2
max(log ‖x(P )‖v, 0) for almost all v. Hence the sum on the right

hand side of the desired formula is actually finite (and hence well-defined).
Denote by h′(P ) the function on E(K) defined by the right hand side of the
desired formula if P 6= 0, and such that h′(0) = 0.

To prove h = h′ it suffices to prove that |h′(P )− 1
2
hx(P )| is bounded and

that h′(2P ) = 4h′(P ) (see Theorem 2.13); here the bars denote the ordinary
absolute value on R.

The latter follows, for 2P 6= 0, immediately from

λv(2P ) = 4λv(P ) − log ‖2y(P )‖v +
1

4
log ‖∆‖v

and the product formula (here written additively)

∑

v∈PK

nv log ‖x‖v = 0,

valid for all x ∈ K, x 6= 0. For P = 0 its is trivially true since h′(0) = 0 by
definition. For 2P = 0 and P 6= 0 we have to show h′(P ) = 0. This can be
done e.g. by the triplication formula λv(3P ) = λv(P )+log ‖f(P )‖+ 2

3
log ‖∆‖

valid for all P with 3P 6= 0 (cf. [Sil2], Exercise 6.4 (e); here f ∈ K(E)
independent of P ).

From property (i) and (ii) of the Néron function we deduce the existence
of constants cv such that

−cv ≤ λv(P ) − 1

2
log max(‖x(P‖v, 1) ≤ cv

for all v ∈ PK and all P ∈ E(K) \ {0}. Even more, by the last theorem we
can and will choose cv = 0 for all but a finite number of v. Multiplying by
nv/[K : Q] and summing over all v then yields

|h′(P ) − 1

2
hx(P )| ≤ 1

[K : Q]

∑

v∈PK

nvcv,

and hence the desired inequality.
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Appendix: Exercises

The following exercises were given to the student at the end of the course as
a written examination (in French). However, they supplement some of the
threads of these notes and may hence be of independent interest.

3.1 Mesure de Mahler de polynômes

en plusieurs variables

Pour un polynôme P ∈ C[X1, . . . , Xn], P 6= 0, on pose

µ(P ) := exp
( ∫ 1

0

. . .

∫ 1

0

log |P (e2πit1 , . . . , e2πitn)| dt1 · · · dtn

)
,

et on pose µ(0) = 0. Dans l’exercice suivant la formule du cours

∫ 1

0

log |α − e2πit| dt = log+ |α|

sera utile1.

(i) En utilisant que µ(f) ≥ |ad| pour tout polynôme f(x) = adX
d+· · ·+a0

en une variable, montrer par récurrence sur n que µ(P ) ≥ 1 si P a des
coefficients entiers.

(ii) Montrer : Si |αk| ≥
∑n

j=0, j 6=k |αj| pour un 0 ≤ k ≤ n, alors

µ(a0 + a1X1 + a2X2 + · · · + anXn) = |ak|.

En déduire µ(X1 + X2 + k) = |k| pour |k| ≥ 2.

1Nous utilisons la notation log+ x = log max(x, 1) (x ∈ R, x > 0).

63
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(iii) Calculer µ(X1 + X2).

(iv) Montrer d’abord que µ(X1+X2+1) =
∫ 1/3

−1/3
log |1+e2πit| dt. Devélopper

log |1 + e2πit| = Re log(1 + e2πit) comme série en puissance de e2πit,
échanger l’intégration et sommation (on admets la justification), et en
déduire que

log µ(X1 + X2 + 1) =
3
√

3

4π
L(2,

( ·
3

)
),

où L(s,
( ·

3

)
) :=

∞∑

n=1

(n

3

)
n−s (s > 1).

On utilisera
∑

n

(
n
3

)
n−s = −4−s

∑
n

(
n
3

)
n−s +

∑
n impair

(
n
3

)
n−s.

3.2 Calcul rapide de l’hauteur canonique

Soit E : y2 = x3 + Ax + B une courbe elliptique définie sur Q. Dans cet
exercice on se propose de démontrer une formule pour l’hauteur canonique
h sur E, qui peut être utile pour un calcul rapide. Pour simplifier nous
supposons le suivant :

1. A,B ∈ Z.

2. On a f(x) := x3 +Ax+B = (x−α)(x−α)(x−β) avec α 6∈ R et β > 0.

Soit φ(x) le polynôme (de degré 4) tel que

x(2P ) =
φ(x(P ))

4f(x(P ))

pour tout P ∈ E(R), P 6= 0. Nous posons h′(0) = 0, et pour P ∈ E(Q),
P 6= 0, x(P ) = a

b
avec a, b ∈ Z tels que pgcd(a, b) = 1 nous posons

h′(P ) = log |a| +
∞∑

n=0

1

4n+1
log |φ(xn)/x4

n|

où x0 = x(P ), xn+1 =
φ(xn)

4f(xn)
(n ≥ 0).

(i) Montrer que, pour x ∈ R, x > β, on a f(x) 6= 0 et φ(x)/4f(x) ≥ β.
Calculer φ(x) et montrer que φ(x)/x4 → 1 pour t → ∞ et φ(β)/β4 > 0.
En déduire qu’il existe des constantes c1 > 0 et c2 telles que l’on a
c1 ≤ φ(x)/x4 ≤ c2 pour tout x ≥ β.
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(ii) Déduire de (i) que la somme qui définit h′(P ) est bien-définie et con-
verge absolument (en fait très rapidement).

(iii) En utilisant sans preuve le fait que pgcd(φ(a/b)b4, 4f(a/b)b4) = 1, mon-
trer que h′(2P ) = 4h′(P ).

(iv) Montrer : Il existe une constante c tel que |h′(P )−log max(|a|, |b|)| ≤ c.
(Ici l’estimation de (i) sera encore utile).

(v) Déduire de (iii) et (iv) que h(P ) = 1
2
h′(P ).

3.3 Fonctions de Néron

Soit E : y2 = x3 + Ax + B une courbe elliptique avec discriminant ∆ définie
sur le corps de nombre K0, soit | · | une valuation de K0 et K la complétion
de K0 par rapport à | · |. Nous allons montrer dans cet exercice l’existence
de la fonction de Néron en | · |. Plus précisemment, nous nous proposons de
montrer qu’il existe une fonction λ : E(K) \ {0} → R tel que

1. λ est continu est borné sur le complément de tout voisinage de 0.

2. limP→0(λ(P ) − 1
2
log |x(P )|) existe (et est fini).

3. λ(2P ) = 4λ(P ) − log |2y(P )| + 1
4
log |∆| pour tout P ∈ E(K) tel que

2P 6= 0.

(0) Montrer que x(2P ) = φ(x(P ))
4f(x(P ))

pour tout P ∈ E, où f(x) = x3 +Ax+B

et φ(x) = −8xf(x) + f ′(x)2.

(i) Pour P ∈ E(K), 2P 6= 0 on pose

f(P ) :=
1

2
log+ |x(2P )| − 2 log+ |x(P )| + log |2y(P )| − 1

4
log |∆|.

Montrer que g(P ) := exp(f(P )) peut être prolongé à une fonction
continue sur E(K). Calculer g(0) et en déduire qu’il existe un c > 0
tel que g(P ) > 0 pour |x(P )| > c.

(ii) Montrer que les polynômes φ(x) et 4f(x) sont relativement premiers,
et qu’ils existent donc des polynômes a(x), b(x) tel que 1 = aφ + 4bf ,
En déduire que g(P ) > 0 pour x(P ) ≤ c (avec le c de (i)).

(iii) Déduire de (i) et (ii) que f(P ) peut être prolongé uniquement à une
fonction continue et bornée sur tout E(K).
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(iv) Montrer, en utilisant (iii), que la somme

µ(P ) :=
∞∑

n=0

4−nf(2nP )

converge pour tout P ∈ E(K) et définit une fonction continue et bornée
µ : E(K) → R qui satisfait f(P ) = 4µ(P ) − µ(2P ) pour tout P ∈
E(K).

(v) Montrer, en résumant, que la fonction λ(P ) := λ1(P ) + µ(P ), définie
pour P ∈ E(K), P 6= 0, satisfait aux propriétés 1. à 3.
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