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Abstract
Characters of rational vertex operator algebras (RVOAs) arising,

e.g., in 2 - dimensional conformal field theories often belong (after suit-
able normalization) to the (multiplicative) semi-group E+ of modular
units whose Fourier expansions are in 1 + q Z≥0[[q]], up to a fractional
power of q. If, furthermore, all characters of a RVOA share this prop-
erty then we have an example of what we call modular sets, i.e. finite
subsets of E+ whose elements (additively) span a vector space which
is invariant under the usual action of SL(2, Z). The appearance of
modular sets is always linked to the appearance of other interesting
phenomena. The first nontrivial example is provided by the functions
appearing in the two classical Rogers-Ramanujan identities, and gen-
eralizations of these identities known from combinatorial theory yield
further examples. The classification of modular sets and RVOAs seems
to be related. This article is a first step towards the understanding of
modular sets. We give an explicit description of the group of modular
units generated by E+, we prove a certain finiteness result for modular
sets contained in a natural semi-subgroup E∗ of E+, and we discuss
consequences, in particular a method for effectively enumerating all
modular sets in E∗.

1 Introduction

Two famous identities were discovered 1894 by Rogers [R] and rediscovered
1913 by Ramanujan and 1917 by Schur, and since then have been cited as
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Rogers-Ramanujan identities:∏
n≡±1 mod 5

n>0

(1− qn)−1 =
∑
n≥0

qn2

(1− q)(1− q2) · · · (1− qn)
,

∏
n≡±2 mod 5

n>0

(1− qn)−1 =
∑
n≥0

qn2+n

(1− q)(1− q2) · · · (1− qn)
.

Apart from their combinatorial meaning concerning partitions, the Rogers-
Ramanujan identities encode the following surprising fact. If we set q = e2πiz

for z in the complex upper half plane, and if we multiply the two identities by
e−πiz/30 and e11πiz/30, respectively, then the functions involved in these iden-
tities become modular functions. As well-known and well-understood this
statement appears for the products, which are, via the Jacobi triple product
identities, quotients of elementary theta series, as remarkable this fact ap-
pears for the theta-like infinite series occurring in these identities. There is
no known conceptual method in the theory of modular forms which produces
modular functions of this shape1.

The Rogers-Ramanujan identities are the first ones of an infinite series
of identities of this kind, namely, of the Andrews-Gordon identities (see Sec-
tion 2). The infinite series occurring in the Andrews-Gordon identities are
more generally of the form

fA,b,c =
∑

n=(n1,...,nr)∈Zr
≥0

qnAnt+bnt+c

(q)n1 . . . (q)nr

, (q)k = (1− q)(1− q2) · · · (1− qk),

where A is a symmetric positive definite rational r × r-matrix, where b is a
rational row vector of length r and c is a rational number. Again, the fA,b,c

occurring in the Andrews-Gordon identities are modular functions (since the
products occurring in these identities are).

One may consider the following problem2: For what A, b and c is fA,b,c a
modular function ?

As it turns out this seems to be a hard question: the answer is not known
and the known instances of modular fA,b,c are very exceptional. For r = 1
the problem was completely solved by Zagier [Z]: there are precisely 7 triples
of rational numbers A > 0, b and c such that fA,b,c is modular (see Table 1).

1At least no such method is known to the authors.
2The first one who mentioned this problem to the authors was Werner Nahm.
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Table 1: All rational numbers A > 0, b, c such that fA,b,c is modular.

A 1 1 1
2

1
2

1
2

1
4

1
4

b 0 1 0 1
2 − 1

2 0 1
2

c − 1
60

11
60 − 1

48
1
24

1
24

1
40

1
40

There are indications that a complete answer to this question would in-
volve K3(Q) [N, Section 4], and might be related to the problem of classifying
vertex operator algebras or two-dimensional quantum field theories [N, Sec-
tion 4], [E-S].

However, the mentioned identities exhibit another remarkable fact. Na-
mely, the space of linear combinations of the two products in the Rogers-
Ramanujan identities is invariant under the natural action of SL(2,Z) on
functions defined on the upper half plane. Moreover, the two products are
modular units, they have non-negative integral Fourier coefficients and they
are eigenfunctions under z 7→ z + 1. These properties hold also true for the
products in the Andrews-Gordon identities (see section 2). More generally,
such sets of products arise naturally as conformal characters of various (ra-
tional) vertex operator algebras [E-S]. The question of finding all such sets
of modular units, the question about the modularity of the fA,b,c, and the
problem of classifying vertex operator algebras seem to be interwoven.

Hence, instead of trying to investigate directly the functions fA,b,c for
modularity, one may hope to come closer to an answer to this problem by
seeking first of all for a description of all finite sets of modular units of the
indicated shape which span SL(2,Z)-invariant spaces. We shall call such sets
modular (see Section 2 for a precise definition). As it turns out, modular
sets are indeed very exceptional and their description is a non-trivial task.

This article is first step towards the understanding of modular sets. As a
byproduct we shall show that an important subclass of modular sets can be
algorithmically enumerated.

2 Statement of results

A modular unit is a modular function on some congruence subgroup of
Γ := SL(2,Z) which has no poles or zeros in the upper half plane H.
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Thus it takes on all its poles and zeros in the cusps. The set U of all mod-
ular units is obviously a group with respect to the usual multiplication of
modular functions.

In this note we are interested in modular units f whose Fourier coefficients
are non-negative integers, which satisfy f(z + 1) = c f(z) with a suitable
constant c, and whose first Fourier coefficients are 1. Denote by E+ the semi-
group of all such units. In other words, E+ is the semi-group of all modular
units whose Fourier expansion is in qs(1+qZ≥0[[q]]) for some rational number
s. Here qs, for any real s, denotes the function qs(z) = exp(2πisz) with z a
variable in H.

Special instances of E+ are the units

[r]l = q−lB2( r
l )/2

∏
n≡r mod l

n>0

(1− qn)−1
∏

n≡−r mod l
n>0

(1− qn)−1 , (1)

where l ≥ 1 and r are integers such that l does not divide r (cf. Lemma 6.1 in
Section 6). Here we use B2(x) = y2−y+ 1

6
with y = x−bxc as the fractional

part of x.
In particular, we are interested in modular sets, by what we mean finite

and non-empty subsets S of E+ such that the subspace (of the complex vector
space of all functions on H) which is spanned by the units in S is invariant
under Γ. Note that the group U is invariant under Γ: if f(z) is a unit and
A ∈ Γ then f(Az) is again a unit. Thus it is easy to write down finite subsets
of U whose span is Γ-invariant. In contrast to this, E+ is not invariant under
Γ, and, indeed, as we shall explain in a moment, modular sets seem to be
quite exceptional. We call a modular set nontrivial if it contains more units
than merely the constant function 1.

An infinite series of examples for nontrivial modular sets is provided by
the following. Let l be an odd natural number and set

φr =
∏

1≤j≤ l−1
2

j 6=r

[j]l (1 ≤ r ≤ l−1
2

).

Then, for each l, the set AGl of all φr with r in the given range is modu-
lar [E-S]. (See also [C-I-Z, Eq. (23)], where, however, the φr are not given as
products, but as quotients of theta functions and the Dedekind η-function.
Both expressions for the φr are easily identified on using the Jacobi triple
product identity; cf. [E-S] for details.)
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The existence of (nontrivial) modular sets is a somewhat remarkable fact.
First of all, the notion of modular sets itself is bizarre: the action of Γ on
modular units defines automorphisms of the group of modular units, whereas
a modular set requires the linear subspace, and not the subgroup, generated
by its elements, to be Γ-invariant. More striking, modular sets seem to be
bound to other remarkable phenomena. The functions φr occur as the one
side of the Andrews-Gordon identities (see, e.g., [B, Eq. (3.2), p. 15 ]):

φr = q−lB2( r
l )/2

∑
n

qnAnt+brnt

(q)n1 · · · (q)nk−1

.

Here k = (l − 1)/2 and n = (n1, . . . , nk−1) runs over all vectors with non-
negative integral entries, A is the matrix A = (min(i, j)), and br is the vector
with min(i+ 1− r, 0) as i-th entry, and finally

(q)m = (1− q)(1− q2) · · · (1− qm)

(with the convention (q)0 = 1). The two identities for l = 5 are the classical
Rogers-Ramanujan identities.

Finally, modular sets show up as sets of conformal characters of certain
rational vertex operator algebras [E-S]. In fact, the modular sets AGl provide
also examples of this [K-R-V, Eq. (2.1)-(2.3)], and we do not know any
modular set which is not the set of conformal characters of a rational vertex
operator algebra [E-S].

The ultimate goal would be a classification of all modular sets. As in-
dicated in [E-S] this is related to the open problem of the classification of
a certain class of rational vertex operator algebras arising in 2-dimensional
conformal field theories.

The first natural step in the study of modular sets is to ask for a more
explicit description of the semi-group E+. We shall prove the following struc-
ture theorem.

Theorem 1. Let E be the group of units generated by the [r]l (defined in
(1)). Then Q∗ ·E coincides with the group of all modular units whose Fourier
expansions are in qs Q[[q]] for suitable rational numbers s.

In particular, the group E is identical with the group of modular units
whose Fourier expansion is in qs(1 + qZ[[q]]) for some rational number s.
Thus, the group of modular units generated by E+ is obviously contained in
E. Since it contains on the other side the generators [r]l of E, we conclude
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Corollary to Theorem 1. The group of modular units generated by the
elements of E+ coincides with the one generated by the [r]l. In particular,
each element of E+ is a product of integral, though not necessarily positive,
powers of the special units [r]l.

There is another remarkable consequence of Theorem 1. Namely, the first
Fourier coefficient of a conformal character needs not to be 1. Thus, with
regard to applications to conformal characters, it would be more natural to
study the semi-group of modular units with Fourier expansions in qs Z≥0[[q]]
for some s. However, by the theorem this semi-group equals Z>0 ·E+, which
shows that one does not loose any generality by restricting to E+, as we a
priori did in this article.

It is worthwhile to describe the structure of the group E, i.e. the (multi-
plicative) relations satisfied by the generators [r]l of E. For each l we have
the obvious homomorphism Z[Z/lZ] → E, which associates to a Z-valued

map f on Z/lZ the product of all [r]
f(r)
l , where r runs through a complete

set of representatives for the nonzero residue classes modulo l. Moreover, one
easily verifies the the distribution relations

[r]l =
∏

s mod m
s≡r mod l

[s]m,

valid for all l and m such that l|m. We may thus combine the above homo-

morphisms by setting, for any locally constant f : Ẑ → Z with f(0) = 0,

[ ]f :=
∏

r mod l

[r]
f(r)
l .

Here Ẑ denotes the Pruefer ring, (i.e. Ẑ = proj lim Z/lZ, equipped with the

topology generated by the cosets Ẑ/lẐ), and l is any positive integer such

that f is constant on the cosets modulo lẐ. By the distribution relations [ ]f

does not depend on a particular choice of l. One has:

Supplement to Theorem 1. The map f 7→ [ ]f induces an isomorphism of

L(Ẑ)/L(Ẑ)− and the group E of modular units generated by the [r]l (defined

in (1)). Here L(Ẑ) is the group of Z-valued, locally constant maps on Ẑ
vanishing at 0, and L(Ẑ)− is the subgroup of odd maps.

The division by L(Ẑ)− is due to the (obvious) relations [r]l = [−r]l.
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Denote by E∗ the semi-group of products of non-negative powers of the
special functions [r]l. Clearly, E+ contains the semi-subgroup E∗, and, by
the corollary to Theorem 1, E+ and E∗ generate the same group. However,
E+ is strictly larger than E∗; e.g., the function [1]34/[2]4 = η−1

∑
n q

n2
(with η

denoting the Dedekind eta-function) is in E+, but not in E∗. Understanding
the last example and giving a complete description of E+ seems to be difficult.

Therefore, we shall consider in the following only modular subsets which
are contained in the the semi-subgroup E∗ of products of non-negative powers
of the [r]l. This restriction seems to be not too serious: in fact, the only
examples of modular sets not contained in Z>0 · E∗ which we know are in a
certain sense trivial (cf. [E-S]).

As the second main result of the present article, we shall prove a certain
finiteness property for modular subsets of E∗, which will in particular imply a
method to systematically enumerate them. Namely, for fixed positive integers
n and l, let En(l) be the set of all products of the form

[r1, . . . , rk]l :=
k∏

j=1

[rj]l,

with k ≤ n, and arbitrary integers rj which are not divisible by l. The sets
En(l) are clearly finite. Using the distribution relations it is clear that any
modular subset of E∗ is contained in some En(l) with suitable n and l. We
shall prove:

Theorem 2. For each n the number of l such that En(l) contains a nontrivial
modular set is finite. More precisely, if En(l) contains a nontrivial modular
set, then l ≤ 13.7n.3

Our proof will exhibit a method to compute, for a given n, all modular
subsets of En(l) for all l. This method, however, becomes quickly non-realistic
for growing n.

In Table 2 we listed all modular subsets of En(l) for n ≤ 3 and l ≥ 1. For
each n, we listed only those modular sets which do not already belong to some
Ek(l) with k < n, and which cannot be decomposed into a disjoint union of
smaller modular sets. By Sn, for a modular set S and a positive integer n,

3Actually the existence of a nontrivial modular set in En(l) implies l ≤ 5n. However,
this sharper result relies on a deep analysis of the (projective) SL(2, Z)-module of all
modular forms of weight 1

2 , and will be published elsewhere.
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Table 2: All modular subsets of En(l) for n ≤ 3 and arbitrary l.

l = 5 7 9
n = 1 AG5

2 AG2
5 AG7

3 AG3
5 W7 := {[1, 2, 3]7} ∪ {[r, r, 3r]7 : r = 1, 2, 3} AG9

we denote the set of all n-fold products of functions in S. Obviously, Sn is
again modular. Note that, for n ≤ 3, there is exactly one ‘new’ modular set,
which we called W7. More examples of modular sets can be found in [E-S].

The plan of the rest of this article is as follows: In Section 3 we shall prove
Theorem 1 and its supplement, and in Section 4 we shall prove Theorem 2.
The auxiliary results derived in Section4 have some interest, independent
of the proof of Theorem 2, in connection with the question of searching for
modular sets. In Section 5 we shall briefly indicate how to use these auxiliary
results for calculating, e.g., the above table.

In the proofs of the two theorems we need certain properties of the [r]l’s,
which we derive in Section 6 by rewriting [r]l in terms of l-division values of
the Weierstrass σ-function and using some of their basic properties. Since
we did not find any convenient reference to cite these properties directly we
decided to develop quickly from scratch the corresponding theory in form of
a short Appendix and part of Section 6. In particular, we emphasize in the
Appendix that the Weierstrass σ-function and its l-division values are best
understood by viewing the Weierstrass σ-function as a Jacobi form on the
full modular group of weight and index equal to 1

2
(see Theorem 7.1).

3 The group of units generated by the [r]l

In this section we prove Theorem 1 and its supplement. We shall actually
prove the slightly stronger Theorem 3.2. Its proof depends on two well-known
facts: first, that the group of all modular units modulo the so-called Siegel
units is a torsion group, and, secondly, that modular forms on congruence
subgroups with rational Fourier coefficients have bounded denominators. The
short proof of the first one is given in Section 6, for the second, deeper one,
we refer to the literature.

We precede the proof of Theorem 3.2 by three lemmas. The first one,
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which we actually call theorem to emphasize its more general usefulness, is
a general statement about product expansions of holomorphic and periodic
functions in the upper half plane. It is important for the proof of the third
lemma, but it also implies directly the supplement to Theorem 1 of Section 2.

Theorem 3.1. Let f be a holomorphic and periodic function on the upper
half plane whose Fourier expansion is in 1 + qZ[[q]] . Then there exists a
unique sequence {a(n)} of integers such that

f =
∏
n≥1

(1− qn)a(n),

for sufficiently small |q|.

Remark 3.1. As can be read off from the proof the lemma actually holds true
with Z replaced by an arbitrary subring of C.

Proof. The existence of the sequence a(n) follows by induction on n. Namely,
assume that one has already found integers a(n) (1 ≤ n < N) such that

g := f/
N−1∏
n=1

(1− qn)a(n) = 1 +O(qN).

Let −a(N) be the Fourier coefficient of g in front of qN . Clearly a(N) is
integral. One has

f/
N∏

n=1

(1− qn)a(n) = g/(1− qN)a(N) = 1 +O(qN+1).

The uniqueness of the a(n) follows from the uniqueness of the Fourier expan-
sion of q d

dq
log f .

Proof of Supplement to Theorem 1. That the kernel of the map L(Ẑ) 7→ E

equals L(Ẑ)− follows from the uniqueness of the product expansion in the
preceding proposition and on writing

[ ]f =
∏

r mod l

[r]
f(r)
l = qc

∏
n≥1

(1− qn)−f(n)−f(−n)

with a suitable constant c. The surjectivity is obvious from the definition
of E.
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Lemma 3.1. Let f ∈ 1
D

Z[[q]] for some positive integer D. If some positive
integral power of f has integral coefficients, then f has integral coefficients.

Proof. By assumption about the coefficients of f we can write f = γ · h
with a suitable rational number γ and with a primitive h. Here primitive
means that h is a power series in q with integral coefficients a(l) which are
relatively prime. By assumption, γN ·hN , for some integerN ≥ 1, has integral
coefficients. We shall show in a moment that hN is primitive. From this we
deduce that γN is integral. Hence γ is integral, which proves the lemma.

It remains to show that hN is primitive. Let p be a prime. Since h is
primitive, there exists an l such that p|a(j) for j < l and p 6 |a(l). But then
the qNl-coefficient of hN satisfies∑

i1+···+iN=Nl

a(i1) · · · a(iN) ≡ a(l)N mod p,

and whence is not divisible by p.

For the following, let E(l), for fixed l, denote the group generated by the
[r]l with 1 ≤ r ≤ bl/2c.

Lemma 3.2. Let f be a modular unit with rational Fourier coefficients.
Assume that a positive integral power of f lies in E(l). Then f is in E(2l)
(and even in E(l) for odd l).

Proof. Since f is invariant under a congruence subgroup it has bounded de-
nominators, i.e. there exist an integer D > 0 such that D · f has integral
Fourier coefficients. This well-known fact follows, e.g., on writing fη24N , with
a suitable integer N > 0 (and with η denoting the Dedekind eta-function), as
linear combination of modular forms with integral Fourier coefficients (which
is possible by Theorem 3.52 in [Sh]), deducing from this that fη24N has
bounded denominators, which in turn implies that f has bounded denomi-
nators since η−1 has integral Fourier coefficients.

Combining the latter with the fact that some positive integral power of
f lies in E(l), we see that, for some rational number s, the function q−sf
satisfies the assumption of Lemma 3.1, and hence is in Z[[q]]. Moreover, by
assumption, its first Fourier coefficient is 1.

But then q−sf possesses a product expansion as in the Theorem 3.1. By
the uniqueness of the a(n), and since a nonzero integral power fN of f is a
product of [r]l’s, we conclude that Na(n) = Na(m) for n ≡ ±m mod l, and
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that Na(0) = 0. Since N 6= 0 the same holds true with {Na(n)} replaced by
{a(n)}. Thus we find, on re-ordering the product expansion of f according
to the residue classes of n modulo l, that

f−1 = [1]
a(1)
l [2]

a(2)
l · · · [m− 1]

a(m−1)
l [m]

νa(m)
l

where m = bl/2c, and where ν = 1 for odd l, and ν = 1/2 for even l. Hence,
if l is odd, then f ∈ E(l). If l is even, one uses the distribution relations (in

particular, [l/2]
1/2
l = [l/2]2l) to deduce f ∈ E(2l).

Theorem 3.2. The group of modular units on Γ(l) (= {A ∈ SL(2,Z) | A ≡
1 mod l}) with Fourier expansions in qs Q[[q]] for suitable rational numbers s
is a subgroup of Q∗ · E(2l) (and even of Q∗ · E(l), for odd l).

Proof. Let f be unit on Γ(l) such that, for some rational number s, the func-
tion q−sf has rational Fourier coefficients. For showing that f is contained
in Q∗ ·E(l) or Q∗ ·E(2l), respectively, we may assume that f is normalized,
i.e. that its first Fourier coefficient is 1. By Lemma 3.2 it then suffices to
show that a positive integral power of f lies in E(l).

By Theorem 6.2 of Section 6 we know that some nontrivial power of f
can be written as product of Siegel units sα, which are defined by Eq. (2) of
Section 6. More precisely, there exists integers a > 0, b(α), and a constant c
such that

fa = c ·
∏
α∈I

sb(α)
α ,

where I is a finite set of pairs of rational numbers of the form ( r
l
, s

l
) with

integers r, s such that gcd(r, s, l) = 1.
By replacing a and the b(α) by suitable positive integral multiples we

may assume that fa is invariant under T = (1, 1; 1, 0). On the other hand, by
Theorem 6.1 in Section 6 we have that sα◦T equals sαT , up to multiplication
by a constant. Let K denote the field of l-th roots of unity. For an integer
y relatively prime to l denote by σy the automorphism of K which maps an
l-th root of unity ζ to ζy. We extend σy to an automorphism of the ring
R =

⊕
s∈Q q

sK[[q]] by letting it act on coefficients. Since f has rational
coefficients, it is invariant under σy. From the formula for sα in Section 6 it
is immediate that, for α ∈ I, one has sα ∈ R and that σysα equals sαD(y), up
to multiplication by a constant and with D(y) = (1, 0; 0, y).
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Using these properties we can write

falϕ(l) =
∏

y mod ∗l

l−1∏
h=0

σy(f
a ◦ T h) = d

∏
α∈I

( ∏
y mod ∗l

l−1∏
h=0

sαT hD(y)

)
with a suitable constant d, where the asterisk indicates that y runs through a
complete set of primitive residue classes modulo l, and ϕ(l) denotes as usual
the number of such classes.

It remains to show that the expressions tα in the rightmost parenthesis
are in E(l), up to multiplication by constants (whose product then equals
d−1, since f is normalized). Write α = (r, s)/l as above. Clearly αT hD(y) =
(r, t)/l with a suitable integer t. If h and y run through the given range,
then t runs through a complete set of representatives for the residue classes
modulo l which are relatively prime to gcd(r, l), and each such t is taken
on the same number of times, say p (look at the action of the subgroup of
GL(2,Z/lZ) of matrices of the form (1, x; 0, y) on pairs of residue classes
(u, v) in (Z/lZ)2 with gcd(u, v, l) = 1 ).

Thus tα is the p-th power of∏
t mod l

gcd(t,r,l)=1

s(r,t)/l =
∏

t mod l

∏
d|r,l,t

s
µ(d)
(r,t)/l =

∏
d|r,l

∏
u mod l/d

s
µ(d)

( r
d
,u)/ l

d

=
∏
d|r,l

[r
d

]µ(d)

l
d

.

Here we used the Moebius function µ(d), and, for the last identity, Lemma 6.1
of Section 6; moreover, we have to assume that l does not divide r (since sα,
for α ∈ Z2, is not defined). On using the distribution relations in E we can
rewrite the right hand side as power products of [r]l’s. If l divides r, then
we leave it to the reader to verify by a similar calculation (using directly the
definition (2) of sα) that the left hand side of the last identity equals

∏
r[r]l,

where r runs through a complete system of representatives for the primitive
residue classes modulo l.

Proof of Theorem 1. This is clearly a consequence of Theorem 3.2.

4 Properties of modular sets

In this section we shall prove Theorem 2. Actually, we shall prove the slightly
stronger Theorem 4.2 below. Its proof will mainly depend on two results:

12



the first one concerns a sort of measure on the projective space over Z/lZ
(Theorem 4.1; see also the beginning of §5). The second result (Lemma 4.2)
uses information about the action of Γ on the [r]l, and will not be completely
proved before Section 6.

The first lemma gives a necessary criterion for a set S ⊂ E+ to be modular
in terms of the vanishing or pole orders of the functions in S. Let f 6≡ 0 be
a modular function on some subgroup of Γ, and let s ∈ P1(Q) = Q∪{∞} be
any cusp. Then there exists a A ∈ Γ such that s = A∞, and a real number
α such that f(Az)q−α(z) tends to a non-zero constant for z = it with real
t→∞. The number α does not depend on the choice of A. We set

ords(f) = α.

Lemma 4.1. Let S be a finite set of modular functions such that the space
spanned by its elements is invariant under SL(2,Z). Then the map

ν : P1(Q) → Q, ν(s) = min
f∈S

ords(f)

is constant.

Proof. Indeed, for any fixed A,B ∈ SL(2,Z) and any f ∈ S the function
f ◦A is a linear combination of the functions g ◦B with g ∈ S. In particular,
comparing the leading terms of the Fourier expansions of these functions, we
conclude

ord∞(f ◦ A) ≥ min
g∈S

ord∞(g ◦B).

Since this is true for any f , and on using ord∞(f ◦A) = ordA∞(f) we obtain
ν(A∞) ≥ ν(B∞). Interchanging the role of A and B we see that here we
actually have an equality. This proves the lemma.

Lemma 4.2. Let s ∈ P1(Q). Then

ords([r]l) = − t
2

2l
B2

(ar
t

)
,

where s = a
c

with relatively prime integers a and c (in particular, a = ±1
and c = 0, if s = ∞), and where t = gcd(c, l).

Proof. Let A ∈ Γ be a matrix with first row equal to (a, c)t, i.e. such that
A∞ = s. Then ords([r]l) = ord∞([r]l ◦ A), and the right hand side is given
in Lemma 6.1 of Section 6.
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Combining Lemma 4.1 and Lemma 4.2 we obtain the following necessary
criterion for a set S ⊂ En(l) to be modular. This criterion is the key for the
proof of Theorem 2. We remark that Lemma 4.3 is actually the only instance
in the proof of Theorem 2, where we use that S is contained in E∗, rather
than only in E+

Lemma 4.3. Let S ⊂ En(l) be modular, and assume that S contains at least
one n-fold product (i.e. an element in En(l)\En−1(l)). Then, for all divisors
t of l, one has

max
[a1,...,ak]l∈S

max
a mod ∗t

k∑
j=1

B2

(aja

t

)
=

n

6t2
.

Here the asterisk indicates that a runs through a complete set of representa-
tives for the primitive residue classes modulo t.

Remark 4.1. Note that the lemma implies that gcd(a1, . . . , an, l) = 1 for all
n-fold products π = [a1, . . . , an]l ∈ S. Indeed, if d denotes this gcd, then the
lemma applied to t = d becomes n

6
≤ n

6d2 , whence d = 1.

Proof. If f ∈ S is an k-fold product, then ord0(f) = − k
12l

by the preceding
lemma. Since S contains an n-fold product, we conclude that

min
f∈S

ord0(f) = − n

12l
.

The claimed inequality is now an immediate consequence of the first two
lemmas.

We call a point P = (a1, . . . , an) ∈ (Z/lZ)n special if

n∑
j=1

B2

(aja

t

)
≤ n

6t2

for all divisors t of l and all integers a relatively prime to t. Here the bar
denotes reduction modulo l.

Theorem 2 will now be a consequence of Lemma 4.3 and the following
theorem, whose proof will take the rest of this section.

14



Theorem 4.1. For a given n there exist only a finite number of l such
that (Z/lZ)n contains a special point. More precisely, if (Z/lZ)n with l > 1
contains a special point, then

l ≤ B :=

 2 (1 + l
1
n
−1)

1−
√

1
3

+ 2
3p2

n

,

where p is the smallest prime divisor of l.

Theorem 4.2. If En(l) contains a nontrivial modular set, then l ≤ B with
B as in Theorem 4.1.

Proof. Let S be a modular subset of En(l), and let k be minimal such that
S is contained in Ek(l). Let π = [r1, . . . , rk] ∈ S. By Lemma 4.3 π yields a
special point (r1, . . . , rk) ∈ (Z/lZ)k. Hence, by Theorem 4.1, l is bounded
from above by the right hand side of the claimed inequality, but with n
replaced by k. Since k ≤ n, the theorem then follows.

Proof of Theorem 2. This is an immediate consequence of the preceding the-
orem. The bound in Theorem 2 is obtained from the bound of Theorem 4.2
by estimating p to below by 2 and on using 1 + l1/n−1 ≤ 2.

It remains to prove Theorem 4.1 on special points. For its proof we use

Lemma 4.4. Let P ∈ (Z/lZ)n. Then there exists an integer b not divisible
by l such that b ·P = (b1, . . . , bn) with integers bj (and where the bar denotes
reduction modulo l) satisfying

|bj| ≤ l1−
1
n + 1.

Remark 4.2. Note that the inequality is, for fixed n and asymptotically in
growing primes l, best possible, apart from a constant. Indeed, the number
of points in (Z/lZ)n described by homogeneous coordinates satisfying the
above inequality is

≤ (2l/l1/n + 3)n ≈ 2nln−1.

But, for growing primes l, this is up to factor 2n asymptotically equal to the
number of orbits of (Z/lZ)n modulo multiplication by non-zero elements of
Z/lZ, which is

(ln − 1)

l − 1
+ 1.

15



Proof. For an integer r, setBr = [−r, r]n∩Zn, and let Cr denote the reduction
of Br modulo l. Assume r < l

2
. Then Cr contains exactly (2r+1)n elements.

Note that the sum of two points of Cr always lies in C2r.
Consider the sets x ·P +Cr, where x runs through Z/lZ. If the sum of the

cardinalities of these sets is strictly greater than ln, i.e. if l · (2r + 1)n > ln,
then there exist at least two which have non-empty intersection.

Assume that there exists an integer r satisfying the inequalities of the
two preceding paragraphs, i.e. satisfying

l

2
> r >

l1−1/n

2
− 1

2
=: ρ.

Pick x 6≡ x′ mod l such that x · P + Cr and x′ · P + Cr contain a common
point Q. Then xP − Q and Q − x′P both lie in Cr, and hence their sum
(x− x′)P is in C2r, whence can be represented by a point in B2r.

If l
2
> ρ+ 1 we may take r = bρ+ 1c to fulfill the above two inequalities.

Since then 2r ≤ 2ρ + 2 = l1−1/n + 1, the lemma follows. Otherwise l
2
≤

ρ+ 1 ≤ 2ρ+ 2 = l1−1/n + 1, and then the lemma is trivial.

Proof of Theorem 4.1. Let P ∈ (Z/lZ)n. Choose b as in the last lemma.
Write b

l
= a

t
with a divisor t of l and gcd(a, t) = 1. Note that t 6= 1 (since b

is not divisible by l), and hence t ≥ p with the smallest prime divisor p of l.
Thus,

aP

t
≡ 1

l
(b1, . . . , bn) mod Zn,

with integers bj satisfying

|bl/l| ≤ l−
1
n + l−1 =: s.

Since B2 is decreasing in [0, 1
2
], we find, for s ≤ 1

2
, i.e. for l ≥ (2(1 + l

1
n
−1)n,

the inequality
n∑

j=1

B2

(abj
t

)
≥ nB2(s).

Thus, if s satisfies

B2(s) >
1

6p2
(≥ 1

6t2
),
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then (Z/lZ)n can never contain a special point. It is easily checked that the

last inequality, together with l−
1
n + l−1 = s ≤ 1

2
, is equivalent to

s <
1−

√
1
3

+ 2
3p2

2
.

From this the theorem becomes obvious.

5 Computing modular sets

We explain how we computed Table 2 in Section 2. The remarks of this
section can actually be used to find for arbitrary n all modular sets in En(l)
for all l, though, for growing n, the required computational resources become
soon unrealistic4.

The algorithm to enumerate all modular sets is based on the simple obser-
vation, that a subset of En(l) is modular if and only if the space of functions
which it spans is invariant under z 7→ −1/z. This characterization follows
easily from the fact that SL(2,Z)/{±1} is generated by z 7→ −1/z and
z 7→ z + 1. The invariance of a space spanned by a subset of En(l) can be
checked using explicit transformation formulas for the [r]l under Γ; cf. Theo-
rem 6.1 and Lemma 6.1. (Note that by standard arguments from the theory
of modular forms it suffices to check N = N(l, n) many Fourier coefficients
only to decide whether π(−1/z), for π in En(l), is a linear combination of
products in En(l), where N(l, n) is a constant depending only on l and n,
and which can be determined explicitly.)

Now, to find the maximal modular subset of En(l) one could proceed
as follows: Compute the set S1 of all π in En(l) such that π(−1/z) is a
linear combination of functions in En(l). Next one computes the set S2 of all
functions π in S1 such that π(−1/z) is a linear combination of functions in
S1. Continuing like this one obtains a decreasing sequence of sets Sk. Either
at some point Sk is empty, and then En(l) contains no modular subset, or
else Sk = Sk+1 for some k, and then Sk is the maximal modular subset of
En(l). However, since the number of products in En(l) grows exponentially
in l it is necessary to look theoretical means to reduce the computational
complexity. We indicate two such means.

4Using a cluster all modular sets in En(l) for all l and n ≤ 13 could be determined; the
results of this computation will be published elsewhere.
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Assume S ⊂ En(l) is modular. In this paper we are only interested in
n < 6. This simplifies the computations a bit since then, for each 0 ≤ k ≤ n,
the subset S(k) of all products of length k in S is already modular. Indeed,
by the very definition of [r]l the elements of S(k) have a Fourier expansion
in powers of qn/12l, where n ∈ −kl2 + 6Z. Furthermore, the π(−1/z), for
π ∈ S(k), have a Fourier expansion in powers of qn/12l, where n ∈ −k + 12Z
(cf. Lemma 6.1). From this our proposition follows immediately if 3 does
not divide l (and since k < 6). If 3 divides l, then our argument shows that
S can only contain products of length 3 (again using k < 6), and our claim
follows in this case too.

Hence, for verifying our table we can restrict our search for modular
subsets of En(l) to modular subsets of Fn(l) := En(l) \ En−1(l).

Next, it is not at all necessary to consider all functions in Fn. Namely,
let us call a subset T of Pn−1(Z/lZ) premodular if

max
P∈T

βt(P ) =
n

6t2

for all divisors t of l. Here we use

βt([a1 : · · · : an]) = max
a mod ∗t

n∑
j=1

B2

(aaj

t

)
(with the asterisk as in Lemma 4.3 and the bar denoting reduction modulo l).
Let Cn(l) be the union of all premodular subsets in Pn−1(Z/lZ), if there are
any, and Cn(l) = ∅ otherwise.

If S ⊂ Fn(l) is modular, then, by Lemma 4.3, the set S of all points
[a1 : · · · : an] ∈ Pn−1(Z/lZ) such that π = [a1, . . . , an]l ∈ S is premodular.

Thus to find the maximal modular subset of Fn(l) one computes first of
all Cn(l). If it is non-empty, let S0 be the set of all products in Fn(l) such that
S0 = Cn(l). If it is not clear by other means whether S0 actually contains
a modular subset, then we now proceed as indicated at the beginning of
this section:. Let S1 be the set of all π ∈ S0 such that π(−1/z) is a linear
combination of functions in S0. Similarly, construct S2 from S1, S3 from S2

and so forth. Either some Sk is empty, and then Fn(l) contains no modular
set, or Sk = Sk+1 6= ∅ for some k, and then Sk is the maximal modular set
in Fn(l).

Assume now n = 1 and l > 1. Then Pn−1(Z/lZ) contains only one point
[a]. If this point yields a premodular set, one has

βl([a]) = B2

(1

l

)
=

1

6l2
.
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For the first equality we used that B2(x) is even, decreasing between 0 and
1
2
, and that gcd(a, l) = 1. Rewriting this identity as 5 − 6l + l2 = 0 we find
l = 5 as the only solution > 1. And indeed, F1(5) equals AG5.

Let n = 2 or n = 3. We determine, for all l, all non-empty Cn(l). If Cn(l)
is non-empty, then Cn(t) is non-empty for all divisors t of l. Theorem 4.1
applied with l equal to a prime p shows that C2(p) = ∅ for p > 37, and
C3(p) = ∅ for p > 113. A computer search shows that actually C2(p) 6= ∅
only for p = 2, 5, 7, and C3(p) 6= ∅ only for p = 3, 5, 7. Next, for each of these
primes p, we look for powers pr such that Cn(pr) is nonempty. The possible
values of r are bounded by Theorem 4.1. Again by a computer search, we find
that C2(l) 6= ∅ implies l | 2 ·5 ·7, and that C3(l) 6= ∅ implies l | 32 ·5 ·7. A final
computer search yields then the Table 2. The above procedure to pass from
premodular sets to the maximal modular one, i.e. to descend to S1, S2 etc.,
had actually only been applied twice in the course of our computations: to
rule out certain functions for n = 3 and l = 15, and to prove that W7 is
modular.

6 The [r]l in terms of l-division values of the

Weierstrass σ-function

Problems involving the action of Γ on modular units are most conveniently
studied using l-th division values of the Weierstrass σ-function (or Siegel
units, as they are called in the literature). This relies on the following two
facts: Firstly, the action Γ on a Siegel unit is given by an explicit formula
(Theorem 6.1). Secondly, if S denotes the group generated by the Siegel
units, then U/S has exponent 2.

The transformation formulas are most naturally and easily derived by
using the Jacobi group and considering the Weierstrass σ-function as Jacobi
form. Since this approach cannot be found in the literature we present it
here in form of an appendix. The resulting formulas, however, are classical
and well-known.

For the complicated proof of the second fact, namely that U/S has ex-
ponent 2, see the book [K-L] and papers cited therein. For us, fortunately,
it suffices to know the considerably simpler fact that U/S is a torsion group
(Theorem 6.2). Since we do not know any reference to an easy and direct
proof of this, we shall give such a proof here. Finally, we shall describe below
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the relation between Siegel units and the functions [r]l and we shall deduce
from this and the two theorems on Siegel units the facts (Lemma 6.1) which
were used in the preceding paragraphs without proofs.

For a row vector α = (a1, a2) ∈ Q2, α 6∈ Z2, set

sα = q−B2(a1)/2
∏

n≡a1 (Z)
n≥0

(1− qne(a2))
−1

∏
n≡−a1 (Z)

n>0

(1− qne(−a2))
−1 . (2)

Here e(. . . ) = exp(2πi . . . ). Note that the first product has to be taken over
all non-negative n, whereas the second one is over strictly positive n only.
Moreover, sα depends only on α mod Z2. Finally, sα has clearly no zeros or
poles in the upper half plane. The functions s−1

α are known in the literature
as Siegel units.

The following theorem will be proved in the Appendix.

Theorem 6.1. For all non-integral α ∈ Q2 and all A ∈ SL(2,Z) there exist
a root of unity c(α,A) such that

sα ◦ A = c(α,A) sαA.

(Here aA means the usual action of A on the row vector a, and (sα ◦A)(z) =
sα(Az).) Moreover, for a given α, the group of A such that c(α,A) = 1 is a
congruence subgroup. In particular, sα is a modular unit.

Remark 6.1. The numbers c(α,A) define obviously a cocycle of Γ = SL(2,Z),
i.e. one always has c(α,AB) = c(α,A) · c(αA,B). The actual values of
c(α,A) will drop out automatically of the proof given below though we do
not need them. In particular, c(α,A)12l = 1 for all A, where l is the common
denominator of a1 and a2.

Theorem 6.2. Let f be a modular unit on the principal congruence subgroup
Γ(l). Then a suitable positive integral power of f is, up to multiplication by
a constant, contained in the group generated by the Siegel units sα, where α
runs through all pairs of rational numbers of the form ( r

l
, s

l
) with integers r, s

such that gcd(r, s, l) = 1.

Proof. Let U [Γ(l)]/C∗ be the group of modular units on Γ(l) modulo multi-
plication by constants. Since the map

U [Γ(l)]/C∗ → Z[Γ(l)\P(Q)], π 7→ divisor of π
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is injective and takes its image in the subgroup of divisors of degree 0, we
conclude that the rank of U [Γ(l)]/C∗ is ≤ R − 1, where R = |Γ(l)\P(Q)| is
the number of cusps of Γ(l). It is well-known that R equals the cardinality
of I, where I is a complete set of representatives for{

(
r

l
,
s

l
) ∈ 1

l
Z2 : gcd(r, s, l) = 1

}
modulo Z2 and modulo multiplication by ±1.

On the other hand, for suitable large integers N the powers sN
α with α ∈ I

are elements in U [Γ(l)] (in fact, one may take N = 12l). This is an immediate
consequence of Theorem 6.1 and the remark subsequent to it.

Moreover, a relation ∏
α∈I

sc(α)
α = const.

holds true if and only if c(α), as function of α, is constant. Indeed, a constant
function c(α) yields a modular unit a power of which is invariant under
SL(2,Z) by Theorem 6.1. Since SL(2,Z) has only one cusp, this unit must
be a constant. That there is no other relation can, e.g., be verified by looking
at the logarithmic derivatives of the sα, which, by well-known theorems, span
the space of Eisenstein series on Γ(l) [H, pp. 468]. But the dimension of this
space is R − 1. Hence the rank of the subgroup of U [Γ(l)]/C∗ generated by
the C∗ · sN

α (α ∈ I) equals R − 1. We deduce from this that U [Γ(l)]/C∗ has
full rank R − 1, and that the C∗ · sN

α (α ∈ I) generate a subgroup of finite
index.

Lemma 6.1. Let l ≥ 1 be an integer. For each integer r not divisible by l
one has

[r]l =
∏

s mod l

s(r,s)/l.

In particular, [r]l is a modular unit. For each A = (a, b; c, d) ∈ Γ one has

[r]l ◦ A ∈ c q−
t2

2l
B2(ar

t )(1 + q1/l K[[q1/l]]),

where t = gcd(c, l), where K denotes the field of l-th roots of unity, and where
c is a constant.

Proof. The formula expressing [r]l in terms of the sα is a simple consequence
of the polynomial identity∏

k mod l

(1− e(k/l)Z) = 1− Z l.
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By Theorem 6.1 the function [r]l is then a modular unit. The last assertion
follows from the given formula, Theorem 6.1, and on using

−1

2

∑
s mod l

B2

(ra+ cs

l

)
= − t

2

∑
y mod l

y≡ar mod t

B2

(y
l

)
= − t

2

2l
B2

(ar
l

)
.

Here the second identity is the well-known distribution property of the Bern-
oulli polynomial B2(x).

7 Appendix: The Weierstrass σ-function as

Jacobi form

For z ∈ H and x ∈ C let

φ(z, x) = 2πi η(z)2 e

(
η′

η
(z)x2

)
x

∏
l∈Zz+Z

l 6=0

(
1− x

l

)
exp

(
x

l
+

1

2

(x
l

)2
)

= q
1
12

(
ζ1/2 − ζ−1/2

) ∏
n≥1

(1− qnζ)
(
1− qnζ−1

)
,

with η(z) = q1/24
∏

n≥1 (1− qn) denoting the Dedekind η-function, and with
ζr(x) = exp(2πirx) (see,e.g., [S, pp. 143] for a proof of the equality of the
two expressions for φ). Note that φ(z, x) is, up to the factors involving η,
the Weierstrass σ-function.

Theorem 7.1. For A =

(
a b
c d

)
∈ SL(2,Z) and α = (a1, a2) ∈ Z2 one has

φ

(
Az,

x

cz + d

)
e

(
− cx2

2(cz + d)

)
= ε(A)φ(z, x),

φ(z, x+ a1z + a2) q
a2
1/2ζa1 (−1)a1+a2 = φ(z, x),

where ε(A) = η2(Az)/
(
(cz + d)η2(z)

)
.

Proof. The first formula is an immediate consequence of the first definition
for φ on using the identity ZAz + Z = 1

cz+d
(Zz + Z) and

η′

η
(Az)

1

(cz + d)2
=

c

2(cz + d)
+
η′

η
(z),

22



which in turn follows immediately from

η2(Az) = ε(A)η2(z) (cz + d)

with a certain constant ε(A). The second transformation formula can be
directly checked using the second formula for φ.

It is convenient to interpret these transformation laws as an invariance
property with respect to a certain group, namely the Jacobi group J(Z).
For a ring R (commutative, with 1) denote by J(R) the group of all triples
(A,α, n) of matrices A ∈ SL(2, R), row vectors α ∈ R2 and n ∈ R, equipped
with the multiplication law

(A,α, n) · (B, β, n′) = (AB,αB + β, n+ n′ + det

(
αB
β

)
).

The Jacobi group J(R) acts on functions ψ(z, x) defined on H× C by

(ψ|(A,α, n))(z, x)

= e2

(
− cx2

(cz + d)
+ a2

1z + 2a1x+ a1a2 + n

)
ψ

(
Az,

x+ a1z + a2

cz + d

)
(with A and α as in the above Lemma, and with e2(. . . ) = e(1

2
[. . . ])). That

this is indeed an action can be verified by a direct (though subtle) compu-
tation [E-Z, Theorem 1.4]. Using this group action the formulas of Lemma
can now be reinterpreted as

φ|g = ρ(g)φ,

for all g ∈ J(Z), where

ρ ((A,α, n)) = (−1)a1+a2+a1a2+nε(A).

From this transformation law for φ it is clear that ρ defines a character of
J(Z), as can, of course, also be checked directly.

Proof of Theorem 6.1. For α = (a1, a2) ∈ Q2 and β = (b1, b2) ∈ Z2 we have

φ|(1, β + α, 0) = φ|[(1, β, 0) · (1, α, 0) · (1, 0, det

(
α
β

)
)]

= ρ((1, β, 0)) e2

(
det

(
α
β

))
φ|(1, α, 0).
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Call the factor in front of φ|(1, α, 0) on the right hand side C(α, β). It can
easily be checked that

C(α, β) = δ(α+ β)/δ(α),

where

δ(α) = −ρ((1, bαc, 0)) e2

(
det

(
α
bαc

))
e2 (−(a2 − ba2c)(a1 − ba1c − 1)) ,

with bαc = (ba1c, ba2c). Thus, if we set, for α ∈ Q2, α 6∈ Z2,

Sα = δ(α)φ−1|(1, α, 0),

then Sα = Sα+β for β ∈ Z2. From the transformation law for φ under J(Z)
we obtain

Sα|(A, 0, 0) = ε(A)−1 δ(α)

δ(αA)
SαA.

A simple calculation shows that sα(z) = Sα(z, 0). From this Theorem 6.1
follows.
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und ihre Anwendungen auf Funktionentheorie und Arithmetik, in
Mathematische Werke, Nr. 24, 2. Auflage 1970, Vandenhoeck &
Ruprecht, Göttingen 1959.

[K-L] D. S. Kubert, S. Lang, Modular units. Grundlehren der Mathe-
matischen Wissenschaften 244, Springer-Verlag, New York-Berlin,
1981.

[N] W. Nahm, Conformal Field Theory and Torsion Elements of the
Bloch Group, arXiv:hep-th/0404120 (2004)

[R] L. J. Rogers. On the expansion of some infinite products, Lond.
Math. Soc. Proc. 24, 337-352; 25, 318-343 (1893/94)

[S] N.-P. Skoruppa, Modular Forms, in F. Hirzebruch, T. Berger,
R. Jung, Manifolds and Modular Forms, Aspects of Mathemat-
ics, Vieweg, Braunschweig, 1992.

[Sh] G. Shimura, Introduction to the Arithmetic Theory of Automor-
phic Functions, Kant Memorial Lectures, No. 1. Publications of
the Mathematical Society of Japan, No. 11. Iwanami Shoten, Pub-
lishers Tokyo and Princeton University Press, Princeton, N.J.,
1971

[Z] D. Zagier, Oral communication.

Wolfgang Eholzer
Deutsche Börse Systems AG
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