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Abstract

Characters of rational vertex operator algebras (RVOAs) arising
in 2-dim. conformal field theories often belong (after suitable normal-
isation) to the (multiplicative) semigroup E+ of modular units whose
Fourier expansions are in qα(1 + q Z≥0[[q]]) for some rational number
α. If even all characters of a RVOA have this property then we have an
example of what we call modular sets, i.e. finite subsets of E+ whose
elements (additively) span a vector space which is invariant under
the usual action of SL(2, Z). The classification of modular sets and
RVOAs seem to be closely related. In this note we prove a stronger
version of a certain inequality which allows to compute several explicit
examples of modular sets contained in a natural semi-subgroup E∗ of
the semi-group E+ of modular units which have non-negative integer
Fourier coefficients.
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1 Introduction

In the present note we report on the results of a systematic search for modular
sets, and on possible interpretations of these. We also give an improvement
of a certain inequality which is essential for the computation of modular sets.

We recall from [ES05] the definition of modular sets. A modular unit
is a holomorphic function f(z) on the Poincaré upper half plane H, without
zeroes in H, and such that f(z) is invariant under some congruence subgroup
of Γ = SL(2,Z) (i.e. f(Az) = f(z) for all A in some congruence subgroup,
where z 7→ Az is the usual Moebius transformation associated to the matrix
A). We set

E =
{

f modular unit | f ∈ qr(1 + qZ[[q]]) for some r ∈ Q
}

,

where we use qr for the function qr(z) = e2πirz. A modular set is a nonempty
finite subset of E whose elements all have nonnegative Fourier coefficients,
and such that the complex vector space of functions on H spanned by its
elements is invariant under Γ.

In [ES96] it was pointed out that the sets of conformal characters of
various 2-dimensional rational conformal field theories (RCFT) are modular
(after suitable normalisation of the conformal characters). Moreover, as ex-
plained in [ES05], modular sets arise in the context of Ramanujan-Rogers
type identities. The connection between these two phenomena, however,
seems to be completely unclear.

It seems thus to be reasonable to do some computer aided research for
modular sets. As starting point we take the more theoretical results of [ES05]:
Obviously, modular units form a group with respect to usual multiplication
of functions, and it contains E as a subgroup. As shown in [ES05] the group
E is generated by the special modular units

[r]l = q−lB2( r

l
)/2

∏

n≡r mod l
n>0

(1 − qn)−1
∏

n≡−r mod l
n>0

(1 − qn)−1 ,

where l ≥ 1 and r run through all postive integers such that l does not divide
r, and where B2(x) = y2 − y + 1

6
with y = x − bxc as the fractional part

of x. The semisubgroup of units in E with nonnegative coefficients contains
the semigroup E∗ generated by all the [r]l. Since among all modular sets
which we know the nontrivial ones always lie entirely in E∗ it is reasonable
to restrict our research to those.

For this we put, for integers l, n ≥ 1,

En(l) =
{

[r1, . . . , rk]l :=
k
∏

j=1

[rj]l | k ≤ n and rj ∈ Z, l 6 |rj
}

.
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Using the obvious distribution relations

[r]l =
∏

s mod m
s≡r mod l

[s]m (l,m ≥ 1, l|m),

it is clear that any modular set is contained in En(l) for suitable n, l. Since
the union of modular sets is modular we may speak of the unique maximal
modular subset Sn(l) of En(l). For later convenience we define E∗(l) =
∪n≥0En(l) and En(∗) = ∪l>1En(l) and similarly S∗(l) = ∪n≥0Sn(l), Sn(∗) =
∪l>1Sn(l).

It is possible to determine Sn(∗) for small values n explicitly. In [ES05]
this has been done for n = 1, 2, 3. Here we extend the results of loc cit.

to all n ≤ 11. Our explicit results are contained in the tables of section 4.
Before we recall how the sets Sn(∗) can be computed we would also like to
mention some results about the sets S∗(l). In this case we only know S∗(l)
completely for l = 2, 3, 4, 5, 7: for l ≤ 4 one has S∗(l) = ∅, for l = 5 one has
S∗(5) = E∗(5) and for l = 7 one finds that S∗(7) is ‘generated’ by only two
modular sets (see section 3 for details).

Finally, let us recall how, for fixed n, one can compute Sn(∗).
By Theorem 2 of [ES05] we know that if En(l) contains a modular subset

(different from the trivial modular set {1}) then l ≤ 13.7n. Actually we will
show in section 2 that this estimate can be sharpened to the much stronger
estimate l ≤ 5n (cf. the Corollary in section 2). This means that in order
to determine Sn(∗) for fixed n we only have to consider the finitely many
l-values 2, . . . , 5n.

Assume form now on that n and l are fixed (and l ≤ 5n). To compute
Sn(l) we recall from Lemma 3.3 of [ES05] that, for all divisors t of l, one has
for each π = [a1, . . . , ak]l ∈ Sn(l) (k ≤ n)

max
a mod ∗t

k
∑

j=1

B2

(aja

t

)

≤
n

6t2
.

Furthermore, for each divisor t there exists at least one π ∈ Sn(l) such that
equality holds. The asterisk indicates that a runs through a complete set of
representatives for the primitive residue classes modulo t. We call a subset
T ⊂ En(l) pre-modular if it satisfies this conditions.

As for given n and l the set En(l) contains only finitely many elements
we can use a computer programme to determine those of its elements that
are contained in the maximal pre-modular set T ⊂ En(l). If it is not clear by
other means whether T actually is modular, then one can proceed as follows.

Let T1 be the set of all π ∈ T such that π(−1/z) is a linear combination
of the functions in T . Note that by standard arguments from the theory of
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modular forms it suffices to check for N = N(l, n) many Fourier coefficients
only, where N(l, n) depends on l and n, and can be determined explicitly.
The Fourier coefficients of π(−1/z) can be read off from the corollary to
Theorem 5.1 of loc cit.. Similarly, construct T2 from T1, T3 from T2 and
so forth. Either some Tk is empty, and then T contains no modular set, or
Tk = Tk+1 6= ∅ for some k, and then Tk is the maximal modular set in T and
therefore in En(l).

Finally, note that by a simple argument given in section 4 of loc cit. one
can show that for n < 12 any modular set in En(l) can be decomposed into
a disjoint union of modular sets each of which is contained in Ek(l) \Ek−1(l)
for some k ≤ n, i.e. where all products have the same ‘length’. For n ≥ 12,
however, this is no longer true (see the example in the conclusion); we do not
know whether the corresponding statement for maximal modular sets holds
even for n ≥ 12.

The rest of this short note is organised as follows: Section 2 contains the
prove of the estimate l ≤ 5n. In section 3 we have collected a few facts
about the sets S∗(l) for small l and in section 4 we give a complete list of all
modular subsets Sn(∗) for n ≤ 11. We conclude with section 5 with a few
remarks and open questions.

2 The estimate l ≤ 5n

The group Γ = SL(2,Z) is acting on the field of all meromorphic functions on
the Poincaré upper half plane H by (f,A) 7→ f ◦A, where we use (f ◦A)(z) =
f(Az) with z 7→ Az denoting the Moebius transformation associated to the
matrix A.

We are interested in the Γ-invariant subfield Mod(H) of all modular func-
tions. By the term modular function we understand a meromorphic function
f(z) on the upper half plane H which is invariant under some congruence
subgroup of Γ. If f is a modular function and s ∈ P(Q), say s = A∞ for some
A ∈ Γ, then f ◦A possesses a Laurent development in powers of q1/N with a
suitable positive integer N . Here we use qr for the function qr(z) = e2πirz. If
qα is the smallest power occurring in this Laurent series we set

ords(f) := α.

The order of f in α is clearly independent of the choice of A.
Finally, for a finite dimensional Γ-submodule X of Mod(H) we put

νX := min
f∈X

ords(f),
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where s is any cusp. It is easy to see that νX does not depend on the
particular choice of s. In this section we prove

Theorem. Let X be a finite dimensional Γ-module of nonconstant modular

functions. Then νX ≤ − 1
60

.

Since, for a modular set X we have νX = − n
12l

[ES05], we obtain as
immediate consequence

Corollary. Let X 6= {1} be a modular set in En(l). Then l ≤ 5n.

Proof of the theorem. By η we denote the Dedekind eta function, respec-
tively, i.e. we use

η = q1/24
∏

n≥1

(1 − qn).

It is well known that κ(A, z) := η(Az)/η(z) is a multiplier system of weight
1
2

for Γ (i.e., for any A ∈ Γ one has κ(A, z)2 = cx + d, where (c, d) is
the lower row of A, and, obviously from the definition, one has κ(AB, z) =
κ(A,Bz)κ(B, z) for all A,B ∈ Γ). In particular Γ acts on meromorphic
functions f on the upper half plane by

(f |A)(z) = f(Az)κ(A, z)−1.

By a modular function of weight 1
2

we understand a holomorphic function
f on H such that f/η is a modular function (hence in particular invariant
under some congruence subgroup) whose order in each cusp is ≥ − 1

24
. (It

is easily checked that the latter is equivalent to the usual condition of being
“holomorphic in the cusps”) Clearly, Γ acts on the space M1/2 of all modular
forms of weight 1

2
by (f,A) 7→ f |A.

We may assume νX ≥ − 1
24

, since otherwise there is nothing to prove. But
then η×X is a Γ-submodule of M1/2. Moreover, we may obviously restrict to
the case of an irreducible X. Then η×X is irreducible too. Thus, it suffices
to prove that, for any irreducible Γ-submodule Y of M1/2, we have

min
f∈Y

ord∞(f) ≤
1

24
−

1

60
=

1

40
.

By a theorem of Serre and Stark [SS77] one knows that M1/2 is the sum
of the spaces

Tm := span
{

θm,ρ :=
∑

r∈ρ+2mZ

qr
2/4m | 0 ≤ ρ ≤ m

}

,
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where m runs through all positive integers. It is a well-known fact that Tm is
a Γ-submodule of M1/2. The decomposition of Tm in irreducible submodules
was given in [S85], from which the complete decomposition of M1/2 was then
also deduced. We explain this decomposition in more detail.

If m and n are positive integers such that m/n is a perfect square, say
m = nd2, then Tn is a submodule of Tm. Indeed,

nθn,ρ =
∑

x≡ρd mod 2nd

qx
2/4m =

∑

σ mod 2m
σ≡ρd mod 2m/d

θm,σ.

The hermitian scalar product on Tm defined by 〈θm,ρ, θm,σ = 1 if ρ ≡ σ mod
2m, and =0 otherwise, is invariant under the action of Γ [S85] (p.11). Thus,
if we let T 0

m be the orthogonal complement of the sum of all Tn with m/n a
perfect square and n < m, then T 0

m is Γ-invariant.
Next let

G(m) = {ε ∈ Z/2mZ | ε2 ≡ 1 mod 4m}.

If χ is a character of G(m), we let

T 0
m(χ) :=

{

∑

ρ mod 2m

ψ(ρ) θm,ρ ∈ T 0
m | ∀ε ∈ G(m), ρ : ψ(ερ) = χ(ε)ψ(ρ)

}

Clearly, T 0
m(χ) = 0 if χ is odd. However, for even χ, it was shown in [S85]

(Satz 1.8, p.22), that T 0
m(χ) is Γ-invariant and irreducible, and that the

T 0
m(χ) (m ≥ 1, χ ∈ Ĝ(m) even) are pairwise nonequivalent as Γ-modules.

Moreover, [S85] (Satz 5.2, p.101),

M1/2 =
⊕

m≥1

⊕

χ∈Ĝ(m)
χ even

T 0
m(χ).

Hence, any irreducible submodule Y of M1/2 equals T 0
m(χ) for some m

and (even) χ. The theorem now follows from the fact that, for Y = T 0
m(χ),

one has

νY =

{

0 if χ = 1,
1

4m
if χ 6= 1,

as we shall show in a moment. Indeed, this identity implies νY ≤ 1
40

if
m ≥ 10 or if χ = 1. But, for m < 10 one has G(1) = 1, G(m) = {±1} for
m = 2, 3, 4, 5, 7, 8, 9, and G(6) = {±1| × {±1}. Hence, for m < 10, an even
χ 6= 1 exist only if m = 6. But then T 0

6 (χ) is spanned by η [S85] (p.26), and
hence Y/η equals the submodule of constant functions, which is excluded by
the hypothesis of the theorem.
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The above identity can be proved as follows. For any function ψ from
Z/2mZ to C define Θψ by

Θψ =
∑

ρ mod 2m

ψ(ρ) θm,ρ.

Firstly, consider the case of Y = T 0
m(χ) for χ 6= 1. Assume that Θψ is an

element of T 0
m(χ). Then we know by the definition of T 0

m(χ) that ψ(ερ) =
χ(ε)ψ(ρ) for all ε ∈ G(m) and ρ mod 2m so that for ρ = 0 we find ψ(0) =
χ(ε)ψ(0). As χ 6= 1 this implies ψ(0) = 0 and, hence, νY > 0. It remains to
show that νY = 1

4m
for χ 6= 1. Note that νY = 1

4m
is the smallest possible for

νY strictly larger than zero. The equality νY = 1
4m

is now easyly obtained
from the fact that Θψ with ψ given by

ψ(ρ) =

{

χ(ρ) if ρ ∈ G(m),

0 else,

is contained in T 0
m(χ) (obviously ψ satisfies ψ(ερ) = χ(ε)ψ(ρ) for all ε ∈ G(m)

and ρ mod 2m; the orthogonality of Θψ to all θn,ρ with m = d2n is eaily
checked).

Secondly, we show that νY = 0 for Y = T 0
m(1). Here we consider Θψ with

ψ defined by

ψ(ρ) =
∑

ε∈G(m)

exp(
2πiερ

2m
).

Again, it is obvious that ψ(ερ) = ψ(ρ) for all ε ∈ G(m) and ρ mod 2m and
the orthogonality property is a simple exercise.

3 Modular subsets of E∗(l) with l = 2, 3, 4, 5, 7

The maximal modular subsets of E∗(l) with l = 5, 7 can easily be described
explicitly and for l = 2, 3, 4 there do not exist any modular subsets of E∗(l)
at all.

Firstly, note that there are no modular sets in En(l) for l = 2, 3, 4 and
arbitrary n. As only π = [1]nl is possible for l = 2, 3 we find that ord∞(π) =
n
12

6= − n
12l

for l = 2, 3. For l = 4 we must have π = [1]a4[2]
b
4 (a+b = n) so that

ord∞(π) = a+4b
24

6= − n
12l

= −a+b
48

unless a = b = 0. Hence Sn(2) = Sn(3) =
Sn(4) = ∅.

Secondly, for l = 5 we know that the set A1(5) = {[1]5, [2]5} ⊂ E1(5) is
modular. Hence, for every fixed integer n, the set {[1]r5[2]

s
5|r+ s = n} is also
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modular and, therefore, En(5) itself is modular so that Sn(5) = En(5). Note,
however, that Q[[1]5, [2]5] is not freely generated as one has e.g.

1 + [1]5[2]
11
5 + 11[1]65[2]

6
5 = [1]115 [2]5.

Finally, for l = 7 we know from [ES96, ES05] that the sets

A1(7) = {[1, 2]7, [2, 3]7, [1, 3]7} ⊂ E2(7),

A2(7) = Y (7) = {[1, 2, 3]7, [1, 2, 2]7, [1, 1, 3]7, [2, 3, 3]7} ⊂ E3(7)

are modular. We show that the maximal modular subset of En(7) is gener-
ated by these two modular sets. Assume that π = [1]a7[2]

b
7[3]

c
7 (a+ b+ c = n)

is contained in the maximal modular subset of En(7). Without loss of gen-
erality we can assume that a = min(a, b, c) (otherwise we can find elements
in SL(2,Z) that map π to [λ]a7[2λ]b7[3λ]c7 with λ = 2, 3). Using Lemma 3.3 of
[ES05] implies the following inequalities

a ≤ b+ 2c, b ≤ c+ 2a, c ≤ a+ 2b.

But then π can be written as a product of elements in A1(7) and A2(7),
namely as

π =



















[1, 3]7
c−b[1, 2, 3]a+b−c7 [2, 3]c−a7 if a ≤ b ≤ c ≤ a+ b

[1, 3]7
a[2, 3]2b+a−c7 [2, 3, 3]c−a−b7 if a ≤ b ≤ c ≥ a+ b

[1, 2]7
b−c[1, 2, 3]a+c−b7 [2, 3]b−a7 if a ≤ c ≤ b ≤ a+ c

[1, 2]7
2a+c−b[1, 2, 2]b−a−c7 [2, 3]c7 if a ≤ c ≤ b ≥ a+ c.

This shows that the maximal modular subset Sn(7) of En(7) is generated by
A1(7) and A2(7), i.e. that

Sn(7) =
∑

2a+3b=n

A1(7)
aA2(7)

b.

Note, however, that the sum in the last equation is not a direct sum. In
particular, the ring (over Q) generated by the functions [1]7,[2]7 and [3]7 is
not free as exist relations. A particularly simple one is e.g. given by

[1, 1, 2, 2, 2]7 + [2, 2, 3, 3, 3]7 = [1, 1, 1, 3, 3]7.

4 Tables of modular sets in En(∗) for n ≤ 11

In this section we present the results obtained by using the algorithm de-
scribed in section 1 taking into account the improved bound l ≤ 5n proved
in section 2.
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Table 1: Modular subsets of En(l) \ En−1(l) with l 6= 5, 7 and 4 ≤ n ≤ 8.
l\n 4 5 6 7 8

8 A2(8) − N(8) − A2(8)
2

9 − − A1(9)
2 + A3(9) − −

10 − A1(5)
3 + A2(10) − A1(5)

4 + A1(5)A2(10)
11 A1(11) As1,3(11) B2(11) A2(11) A1(11)

2 +D4(11)

12 − − T (12) − −
13 − A1(13) As1,3(13) − B2(13)

15 − − A1(15) − −
16 A1,3(16) − − − A1,3(16)

2 + A2(8) + T (16)
17 − − − A1(17) As1,3(17)

19 − − − − A1(19)
20 − − A1,3(20) − −

Table 2: Modular subsets of En(l) \ En−1(l) with l 6= 5, 7 and 9 ≤ n ≤ 11.
l\n 9 10 11

8 − A2(8)N(8) −
9 A1(9)

3 + A1(9)A3(9) − −
10 − A1(5)

5 + A1(5)
2A2(10) −

11 A1(11)A
s
1,3(11) + A3(11) A1(11)B2(11) + As

1,3(11)
2 A1(11)A2(11) + As

1,3(11)B2(11)

13 A2(13) +B3(13) A1(13)
2 +D5(13) A1(13)A

s
1,3(13)

14 − A1(7)A2(7) + A2(14) −
15 A1(5)

3 + A1(5)A1(15) − −
17 − G2(17) −
19 As1,3(19) − −
20 − A1(5)A1,3(20) −
21 A1(7) + A1(21) − −
23 − A1(23) As1,3(23)

25 − − A1(25)
28 − A1,3(28) −

In Table 1 and 2 we list certain modular subsets of En(l) \ En−1(l) with
l 6= 5, 7 and 4 ≤ n ≤ 11 (the corresponding sets for n = 1, 2, 3 have been given
in section 1 of [ES05]). The SL(2,Z) modules spanned by these modular sets
are equal to the SL(2,Z) modules spanned by the corresponding maximal
modular sets. The corresponding maximal modular sets are obtained from
sets in Table 1 by adding the additional elements listed in Table 2.

To make the information contained in the tables more compact we will,
for S a maximal modular set in En(l) \ En−1(l), use P(S) for the orbits of
the (Z/lZ)∗ action on {[ā1, . . . ān] | [a1, . . . , an]l ∈ S} where the bar denotes
reduction modulo l. Note that, if S is a maximal modular set then P(S)
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determines S uniquely.
In Table 1 and Table 2 we have used A1(k), A1,3(4k) and As

1,3(l) for
the modular sets given by the characters of the Virasoro minimal model
with c = c(2, k) for odd k, of the Virasoro minimal model with c = c(3, k),
(3, k) = 1 (cf. §3.2 of [ES96]) and of the rational models of W (2, l−1

2
) at

c = c(2l, 3), (l, 6) = 1 (cf. §3.3 of [ES96]), respectively.

Table 3: Additional elements in P(S) missing in Table 1 and Table 2.
l\n 6 8 9 10 11

8 − [1,1,1,2,2,2,2,3]8 − −
9 − − [1,1,1,1,2,2,4,4,4]9 − −

− [1,1,1,1,2,3,3,3,5,5]10,

[1,1,1,2,2,2,2,4,5,5]10,

10 [1,1,3,4,4,4] [1,1,1,3,4,4,4,4]10 − [1,1,1,2,2,3,3,4,5,5]10, −
[1,1,2,2,2,3,3,4]10 [1,1,2,2,2,2,2,3,3,5]10,

[1,1,2,2,2,3,4,4,5,5]10

[1,1,1,1,3,3,3,4,5,5]11, [1,1,1,1,2,2,4,4,4,5,5]11,

11 − − − [1,1,1,2,2,2,4,4,5,5]11 [1,1,1,1,2,3,3,3,5,5,5]11,

[1,1,1,1,2,3,3,4,4,4,5]11

13 − − − − [1,1,1,2,2,3,4,5,5,5,6]13,

[1,1,1,2,3,3,4,5,5,5,6]13

14 − − − [1,1,1,3,4,4,5,6,6,6]14 −
20 − − − [1,2,3,4,5,6,7,8,9,10]20, −

[1,2,2,3,5,6,6,7,9,10]20

Furthermore, we have denoted by Ln(k) (L = A, . . . , G, n ≥ 2) the
modular sets associated to

P(A2(7)) = {[1,2,3]7,[1,1,3]7},

P(A2(8)) = {[1,1,2,4]8,[1,1,3,3]8,[1,2,2,3]8,[1,2,3,4]8},

P(A2(10)) = {[1,1,2,2,4,5]10,[1,1,2,3,3,5]10,[1,1,2,3,4,4]10,[1,2,2,3,4,5]10},

P(A2(11)) = {[1,1,2,2,3,5,5]11,[1,1,2,3,3,4,5]11},

P(A2(13)) = {[1,1,2,2,3,3,5,6,6]13,[1,1,2,2,3,4,5,5,6]13,[1,1,2,3,3,4,4,5,6]13},

P(A2(14)) = {[1,1,2,2,3,3,4,6,6,7]14,[1,1,2,2,3,3,5,5,6,7]14,[1,1,2,2,3,4,4,5,6,7]14,[1,1,2,2,3,4,5,5,6,6]14

[1,1,2,3,3,4,4,4,5,6]14,[1,1,2,3,3,4,5,5,6,7]14,[1,1,2,3,4,4,5,6,6,7]14},

P(B2(11)) = {[1,1,2,3,4,5]11,[1,1,2,4,4,5]11},

P(B2(13)) = {[1,1,2,2,4,5,5,6]13,[1,1,2,3,3,4,5,6]13,[1,1,2,3,4,5,5,6]13},

P(G2(17)) = {[1,1,2,3,4,4,6,6,7,8]17,[1,1,2,3,4,5,5,6,7,8]17},

P(A3(9)) = {[1,1,1,3,3,4]9,[1,1,2,2,3,4]9,[1,1,2,2,4,4]9,[1,1,2,3,3,4]9},
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P(A3(11)) = {[1,1,1,2,2,4,4,4,5]11,[1,1,1,2,3,3,4,4,5]11,[1,1,1,2,3,3,4,5,5]11,[1,1,2,2,3,3,4,4,5]11},

P(B3(13)) = {[1,1,1,3,3,4,5,5,6]13,[1,1,2,2,3,4,4,5,6]13,[1,1,2,2,3,4,5,5,6]13,[1,1,2,3,3,4,4,5,6]13},

P(D4(11)) = {[1,1,1,2,4,4,4,5]11,[1,1,2,2,3,4,4,5]11},

P(D5(13)) = {[1,1,1,2,3,4,4,4,6,6]13,[1,1,1,2,3,4,5,5,5,6]13,[1,1,2,2,3,3,4,4,5,6]13,[1,1,2,2,3,3,4,5,6,6]13}.

We have checked that, for n = 2, these modular sets equal the sets of char-
acters of the minimal model of WLn at c = c(ĥ, k) with Ln a simple Lie
algebra and ĥ its dual Coxeter number (cf. the conjecture in §4 of [ES96]).
For n > 2, however we have only checked that the vanishing orders of the
modular units in the corresponding modular sets agree with the ones pre-
dicted by the conjecture in in loc. cit..

Finally, there are three modular sets which do not seem to be related to
any RCFTs

P(N(8)) = {[1,1,1,2,3,3]8,[1,1,1,3,3,4]8,[1,1,2,2,2,3]8,[1,1,2,2,3,4]8},

P(T (12)) = {[1,1,3,3,4,5]12,[1,1,3,4,5,5]12,[1,2,2,3,4,5]12,[1,2,2,3,5,6]12,[1,2,3,4,5,6]12},

P(T (16)) = {[1,1,3,3,5,5,7,7]16,[1,1,3,4,5,6,7,7]16,[1,2,2,3,4,5,7,8]16,

[1,2,2,3,5,6,6,7]16,[1,2,3,4,4,5,6,7]16,[1,2,3,4,5,6,7,8]16}.

Note, however, that with

Tr = {
(θ0,r − θ0,r+2)

2η
,
(θ0,r + θ0,r+2)

2η
,
θ1,r

η
, . . . ,

θr−1,r

η
,
θr,r
2η
,

θ1,r+2

η
, . . . ,

θr+1,r+2

η

θr+2,r+2

2η
}

one has T (12) = T1 and T (16) = T2. Furthermore, for all but two of the

elements π of Ti one has that η((τ+1)/2)
η(τ)

π(τ) is a character of a rational su-

perconformal field theory [F93, Section 6].

5 Conclusions and open questions

A few obvious questions remain:

1. The rings Q[[r]l]r=1,...bl/2c are not freely generated for l ≥ 4 as they are
contained in a function field of a compact Riemann surface and thus

10



in a field of transcendental degree 1. But how do the relations in these
rings look like? We know only a few examples of such relations for
small values of l.

2. Is it true that maximal modular sets in En(l) can always be written
as disjoint unions of modular sets each of which is contained in some
Ek(l) \ Ek−1(l) (k ≤ n)? So far we know that this is even true for all
modular sets in En(l) with n < 12. For n ≥ 12 this property does
not hold for all modular sets; an counter example is e.g. given by the
modular set E12(5) \ {[1]

11
5 [2]5} (cf. section 3).

3. Is it true that the sets S∗(l) are generated by finitely many modular
sets? We know from section 3 that this is at least true for l = 5, 7.

4. Do the modular units in modular sets admit sum formulas similarly to
Ramanujan-Rogers type identities? We only know that this is the case
for the modular sets A1(l) and A1,3(l) (see e.g. [BMS96]).

5. Are all modular sets related to sets of characters of rational vertex
operator algebras? If yes, how can one explain the three exceptional
modular sets T (8), T (12) and N(8) in section 4?

6. From the explicit results in section 4 it seems that all (but the three
just mentioned exceptional cases) of the maximal modular sets can be
interpreted using the (partially conjectured) modular sets described in
[ES96, §3+§4]. This indicates that there might be a classification of
(maximal) modular sets in terms of some data only related to simple
Lie algebras.
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