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Abstract

General upper bounds for lattice kissing numbers are derived using
Hurwitz zeta functions and new inequalities for Mellin transforms.

1 Statement of results

Let τn be the kissing number in dimension n, i.e. the maximal number of balls
of equal size in Euclidean space of dimension n which can touch another one
of the same radius without any two overlapping. Similarly let λn be the
maximal lattice kissing number in dimension n, which is defined like τn, but
with the restriction that all balls are centred at the points of a lattice and
that the centres of the kissing balls have minimal distance to the centre of
the kissed one. Alternatively, λn is the maximal number of minimal vectors
which a lattice L in Rn can have. The precise values of λn and τn are known
only for finitely many values of n [C-S]. Note that λn ≤ τn. The first time
when this inequality is strict occurs for n = 9. Concerning the asymptotic
behaviour of τn one knows τn ≥ (1.15470 . . . )n(1+0(1)) [W], and one has the
following asymptotic estimate to above of Kabatiansky-Levenshtein [K-L]

τn ≤ 20.401n(1+o(1)) = (1.32042 . . . )n(1+o(1)).

As general reference for these and more informations on kissing numbers we
refer to [C-S] or [Z].

In the present note we shall prove a general upper bound for λn, which
we now describe. Assume

1. f : R≥0 → R≥0 is a nonzero decreasing and continuous function.
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2. f(t) and the function F (t) defined by F (|y|) :=
∫

Rn f(|x|) e−2πixy dx are

O
(
t−(n+ε)

)
for some ε > 0 as t tends to infinity. Here xy denotes the

usual scalar product on Rn and |x| =
√
xx.

3. The Mellin transform γ(s) =
∫ ∞

0
F (t1/n) ts dt

t
, can be continued to a

holomorphic function in a vertical strip which contains a real number
c > 1 such that

γ(c) = max
Re(s)=c

|γ(s)|.

Note that the Fourier transform of f(|x|) is radially symmetric, which
justifies to write it in the form F (|y|) with a suitable function F (t) of one
real variable t ≥ 0. The function F is known in the literature as Hankel
transform of f . Note furthermore that the integral defining γ(s) is absolutely
convergent for 0 < Re(s) < 1+ ε

n
. Finally note that any measurable function

f satisfying 2. is automatically continuous.

Theorem 1. Under the above hypothesis 1.–3. one has for λn, the maximal
lattice kissing number of dimension n, the upper bound

λn ≤
2F (0)

c(2c− 1) γ(c)
exp

(
1 +

2c

c− 1
+ c

γ′

γ
(c)

)
Supplement to Theorem 1. If, in addition, F is nonnegative then, for all
c > 1 where the Mellin transform of F converges, one has

λn ≤
F (0)

c(c− 1)γ(c)
exp

(
1 +

c

c− 1
+ c

γ′

γ
(c)

)
.

Note that, for nonnegative F , the condition 3. is automatically satisfied
with every c as in the supplement.

The first upper bound is worse than the second one by a factor strictly
larger than e = exp(1) and tending to e if c tends to infinity. However, the
first bound applies to a larger variety of functions f than the second one since
in Theorem 1 the Hankel transform F is not required to be nonnegative.

The simplest function satisfying the hypothesis 1.–3. is certainly f(t) =
exp(−t2). Here the supplement gives the bound 1.64n(1+o(1)), which is far
off the Kabatiansky-Levenshtein bound. One can do better by using instead
f(t) = max(0, 1 − t2)p for p � 0. In this case, however, we cannot apply
the bound of the supplement since the corresponding functions F are not
nonnegative; but condition 3. is still satisfied (cf. section 3). By applying
Theorem 1 to these functions one obtains

Theorem 2. λn ≤ 1.3592n(1+o(1)).
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This is still worse than the Kabatiansky-Levenshtein bound. However, the
methods used in this article are quite simple compared to the more subtle
arguments in [K-L]. Moreover, we do not know whether it is not possible
to make still a better choice for f for improving the asymptotic estimate.
Whereas the asymptotic bound of Theorem 2 is not too bad, the bounds for
specific dimensions using the functions f(t) = max(0, 1− t2)p are quite poor:
λ2 ≤ 12, λ3 ≤ 31, etc.. Again it is possible that more suitable choices of f
for particular dimensions may yield better results.

In the next section we shall prove Theorem 1 and its supplement, and in
section 3 we shall give the details for deducing Theorem 2 from Theorem 1.
Parts of this work use ideas already presented in [F-S] and in [S].

2 Proof of Theorem 1

Proof. For bounding λn to above we may and will restrict to lattices L in
Rn with minimal length equal to 1. Thus we have to show that, for any
such L, the number a1(L) of points in L with distance 1 to the origin is
bounded above by the right hand side of the inequality of Theorem 1. We
shall actually show that the Hurwitz zeta function

D(s) =
∑

x∈L\{0}

|x|−ns

at s = c (where the sum defining D(s) converges absolutely since c > 1) is
bounded to above by the right hand side. Since trivially

a1(L) ≤ D(c)

the estimate for D(c) then proves the theorem.
Under the hypothesis 1 and 2 the Poisson summation formula is valid,

i.e.
t
∑
x∈L

F (t1/n|x|) = g(L)1/2
∑
x∈L∗

f(t−1/n|x|),

where both sums are absolutely convergent [S-W], p. 252 (VII:Corollary
2.6). Here L∗ denote the dual lattice of L (i.e. the set of all y ∈ Rn such that
yx ∈ Z for all x ∈ L), and g(L) the Gram matrix of any Z-basis of L.

Denote by θ(t) the sum on the left with the term F (0) omitted. Thus
the left hand side equals t(F (0) + θ(t)). This is an increasing real valued
function of t, since f(t−1) (and hence the right hand side) is real valued and
increasing by assumption 1.
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For the Mellin transform Λ(s) of θ(t) we find

Λ(s) =

∫ ∞

0

θ(t) ts
dt

t
= γ(s)

∑
x∈L\{0}

|x|−ns = γ(s)D(s).

The Mellin transform is absolutely convergent for

1 < Re(s) < 1 +
ε

n
,

and in this domain interchanging the integral and the sum over x is indeed
justified, as is easily deduced from the fact that the Mellin transform of
F (t1/n) is absolutely convergent for 0 < Re(s) < 1 + ε/n (by hypothesis 2.),
and that the Hurwitz zeta function of L converges for Re(s) > 1.

Before giving the rest of the proof, we show how to deduce our estimate
using a short argument which, however, is based on assumptions not holding
true in general, but has the advantage of being rapid and suggestive. As-
sume that Λ(s) can be analytically continued to a strip containing 0 and c,
with poles only at 0 and 1, which are simple, and with residue −F (0) at
s = 0. This is a standard situation, which holds true for instance with
f(t) = exp(−t2). Then we may consider the function g(s) = s(s − 1)Λ(s).
Note that g(0) = F (0). Assume further that log g(s) is defined in [0, c] and
convex on this interval. Then

log g(c)− log g(0) ≤ c (log g)′(c) = c
g′

g
(c).

Taking exponentials in this inequality gives

D(c) ≤ F (0)

c(c− 1)γ(c)
exp

(
1 +

c

c− 1
+ c

γ′

γ
(c) + c

D′

D
(c)

)
.

Dropping the term containing D′ (which is negative since D(s) is decreas-
ing for s > 1) we recognise the estimate for D(c) as in the supplement of
Theorem 1.

The mentioned assumption about Λ(s) will in general be false. Never-
theless, if F is nonnegative, the inequality for g(s) holds still true for every
c > 1 where the Mellin transform of F converges. For the proof we rewrite
it as

F (0) ≥ g(c) exp
(
− cg

′

g
(c)

)
,

This inequality is equivalent to the statement that for all a > 0 one has

F (0) ≥
(
g(c)− cg′(c) + cg(c) log a

)
a−c = −c2 d

ds

[
a−s

s
g(s)

]
s=c

.
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Indeed, taking log a = g′

g
(c) gives the first inequality, and for this a the right

hand side of the second one attains its maximum. For proving the latter
estimate we consider, for fixed s > 1 (where γ(s) converges), the function

I(a) = aF (0)/s2−a
∫ a

0

θ(t) log(t/a)(t/a)s dt

t
=

∫ ∞

0

(F (0)+θ(at))atw(t)
dt

t
,

where w(t) = −ts−1 log max(1, t). The second identity is easily justified by the
substitution t← at. Since w(t) is nonnegative and F (0)+ θ(t)t is increasing,
the function I(a) is an increasing function. Hence I ′(a) ≥ 0. Using the first
formula for I(a) for computing the derivative we thus obtain

F (0)/s2 ≥ −
∫ a

0

θ(t) (1 + (s− 1) log(t/a)) (t/a)s dt

t
= − d

ds

a−s

s

∫ a

0

θ(t)ts
dt

t
.

Since F (t) and hence θ(t) is nonnegative this inequality remains valid if we
replace

∫ a

0
by

∫ ∞
0

. Writing c for s this is then the desired inequality, which
proves the supplement to Theorem 1.

In the general case, i.e. for not necessarily nonnegative F , we shall be
able to prove an estimate similar to the one above, however with a factor 1/2
and a slightly different g. Namely, we shall prove

F (0) ≥ 1

2
g(c) exp

(
− cg

′

g
(c)

)
,

where

g(s) =
2c− 1

2c− 1− s
s(s− 1)Λ(s).

From this we deduce as before an upper bound for D(c) and then Theorem 1.
As before the inequality for F (0) is equivalent to the statement that for

all a > 0 one has

F (0) ≥ −c
2

2

d

ds

[a−s

s
g(s)

]
s=c
.

For proving this inequality we set

H(a) = aF (0)/c2 +
1

2πi

∫
Re(s)=c−ε

a1−sg(s)

s(s− 1)
· ds

(s− c)2

=

∫ ∞

0

(F (0) + θ(at))at v(t)
dt

t
,

where

v(t) =
1

2πi

∫
Re(s)=c−ε

2c− 1

2c− 1− s
· t

s−1 ds

(s− c)2
,
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The second identity is easily justified by making on the right hand side the
substitution t← t/a, replacing v(t) by its integral representation, interchang-
ing integrals and using finally

∫ ∞
0
v(t) dt = 1/c2. For ε we may choose and

positive real number such that c− ε > 1 and such that the Mellin transform
of F (t) (and hence of θ(t)) converges absolutely at s = c− ε.

By a simple calculation we see

v(t) =
(2c− 1)

(c− 1)2
·

{
tc−1

(
− log tc−1 + tc−1 − 1

)
if t < 1

0 if t ≥ 1
.

Hence v(t) is nonnegative, and since (F (0) + θ(t))t is increasing, we see that
H(a) is an increasing function. Hence H ′(a) ≥ 0, i.e.

F (0)/c2 ≥ 1

2πi

∫
Re(s)=c−ε

a−sg(s)

s
· ds

(s− c)2
.

Now, for s = c+ it with real t, one has

Re
a−sg(s)

s
≤

∣∣a−sg(s)

s

∣∣ ≤ g(c) a−c

c

as follows easily from the assumption that |γ(s)| ≤ γ(c) for s = c + it.
We may hence apply the following lemma to estimate the last integral to
below by −1

2
d
ds

[g(s)
s
a−s]s=c, which is the desired inequality. This proves the

theorem.

The following lemma was proven, in a slightly different form, in [F-S].

Lemma. Let f(s) be a bounded and holomorphic function in some strip
a < Re (s) < b, real valued for real s. Assume that for some a < c < b
we have

sup
t∈R

Ref(c+ it) = f(c).

Then, for all ε > 0 with a < c− ε, one has

1

2πi

∫
Re(s)=c−ε

f(s) ds

(s− c)2
≥ −1

2
f ′(c).

Proof. Since f(s) is bounded, the integrand of the integral in question is
O(t−2) for t = Re s→ ±∞. Hence we can replace the path of integration by
the line segment from c − i∞ to c − iδ, then along the left half circle with
centre c to c + iδ, and finally the line up to c + i∞. Here δ is any positive
number. For the integral along the half circle γ we find

1

2πi

∫
γ

=
1

δ

∫ 1/4

3/4

f
(
c+ δe2πit

)
e−2πit dt =

1

πδ
f(c)− 1

2
f ′(c) +O(δ).
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For the integrals along the line segments we find, using f(z) = f(z) (since
this is true for real s by assumption),

1

2πi

( ∫ c−iδ

c−i∞
+

∫ c+i∞

c+iδ

)
= − 1

π

∫ ∞

δ

Ref(c+ it) dt

t2
≥ − 1

πδ
f(c).

For the inequality we used Ref(c + it) ≤ f(c). On taking δ → 0 the lemma
follows.

3 Proof of Theorem 2

Proof. For p ≥ 0, the function

f(t) := max(0, 1− t2)p

is nonnegative, decreasing and continuous. We show that f satisfies the
assumptions of Theorem 1.

One has

F (t) = C Γ
(
q
)
Jq−1(2πt)/(πt)

q−1 ( q =
n

2
+ p+ 1 )

with Jq−1 being the Bessel function of order q−1 [S-W], p. 171 (IV:Theorem
4.15), and with a positive constant C. Note that F (0) = C. Using

Jq−1(t) = O(t−1/2)

[S-W], p. 158 (IV:Lemma 3.11), we see that F satisfies the hypothesis 2. of
Theorem 1 as long as

q > n+
1

2
(i.e. p >

n− 1

2
).

In the following we assume this inequality. The Mellin transform of F (t1/n)
equals

γ(s) = C
n

2
π−ns Γ

(
q
)
Γ
(

ns
2

)
Γ
(
q − ns

2

)
([S-W], p. 174 or Titchmarch) The hypothesis 3. is therefore satisfied for
c = q/n since, for any s with real part c, one has |γ(s)| = γ(c).

Thus, by Theorem 1, we obtain the estimate

λn ≤
4n

q(2q − n) Γ(q)
exp

(
1 +

2q

q − n
+ q ψ(

q

2
)
)
.
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Using

log Γ(q) = q log q − q + o(q), ψ(q) = log q +O(q−1) (q →∞),

we obtain, for all fixed small 10−4 ≥ ε > 0, by setting q = (1 + ε)n, the
estimate

λn ≤ exp
(
n(1 + ε)(1− log 2) + o(n)

)
≤ 1.3592n(1+o(1))

as n→∞. This proves Theorem 2.
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