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DEVELOPMENTS IN THE THEORY OF JACOBI FORMS
by

Nils-Peter Skoruppsa

1. Introduction
We would like to begin this survey with some very general remarks about Jacobi forms
These remarks will be as vague as geperal. But. perhaps, they will give the reader a
rough idea of what this survey is dealing with.t Later on' we shall be as concrete as
possible and we shall try to explain everything from scratch.

¥ one would have to explain Jacobi forms by a diagramm, then one couid possibly
give the following one:

Siege} maduier forme
‘of oegme twe

JIN

special thets Firt "" Saito-Kurokawe
(kudtls, Oda) Hr

dacom

forms
ellintic meduter forms Shynura etiiptic rmoguler forrs
of heif~integral welght hrt of inLegral waight

The diagram has to be understood in the following sense: there are various well-known
connect;;:us between those different types of modular forms occuring in the diagram.
Key-words for these connections are written at the corresponding connecting arrow.
The point is that the diagram is commutative, and that the best way from one type of
moduiar form to the other is the way passing through the center of the triangle. To
make the terrn "best” a little bit more precise: The connections to the center are quite
natural {as natural as Jacobi forms are), and the classical correspondences slong the
edges can be most easily understood and technically handled when interpreted as the
suin of two suitable Jacobi form - modular form correspondences.

However. first of all thex;e Jacobi - modular correspondences had to be discovered,
and actually their discovery was historically the starting point for a proper theory of
Jacobi forms. There have already been appearances of Jacobi forms in the literature
before (although these functions were not called Jacobi forms at that time). Shimura

N
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gave a new foundation of the theory of complex multiplication of Abelian functions
using these functions (cf. [Sh]). Kugznetsov constructed functions which are almost
Jacabi forms from ordinary elliptic modular forms (cf. {Ku]). Berndt studied the field
of Jacobi functions (cf.[B]), and Feingold-Frenkel used them in a paper on Kac-Moody
algebras ([F-F]). © Finally, in the early eightics Eichler and Zagier, stimulated by the
proof of the Saito-Kurokawa conjecture, developed a systematic theory of Jacobi forms

along the lines of Hecke's thmrjr of modular forms. This resulted in the meaography
[E-Z].

S:uce then the theory of Jacobi forms has grown quite a bit. There are several
beautiful and/or deep results about Jacobi forma. Moreover, Jacobi forms gave and are
still giving interesting contributions to other parts of mathematics. And so the above
diagram is no longer sufficient to reflect all aspects of Jacobi forms. nor it is necessery
to justify their existence. If one takes into account the more recent developments, then

2 more up-to-date picture could look like this:

avphcetion theory of Keegner uoints
o OF 01 1288 it theory of ediptic genera
{implicit sppgarence in string iheory
. ,Q?fg_mz‘:’::' mi;l < Jrol and skeve-nol)j g s | SNiatic mossler forms
Y n M Jscobi forms perrect of islegral weight
corr

proper

Here the modular forms of half-integral Weight (to be more precise, Kohnen's 7+”-
forms) are considered as proper subset of the Jacobi forms. The meaning of "proper”
is roughly as follows: Kohnen's refinements of the Shimura lift are valid only in the
case of modular forms of odd, squarefree level. I one wishes ta generalize the work
of Kohnen to general levels the l;echmcal difficulties seem to become overwhelming, it
is not even :lear how to generalize naturally the definition of Kohnew's ” +”-space to
kigher levels. These difficulties can be overcome very easily by replacing modular forms
of half-integral weight throughout by Jacabi forms. This lies at hand since a ce:van part
of the whole variety of Jacobi forms can be considered in a natural manner as Kohnen
”+"-forms. If one accordingly establishes the Shimura correspondence for Jacobi forms.

as was done in [S-Z], this whole theory turns out to be smooth without any technical

(or natural) restrictions.

© I a paper is missing here then this is due to the author’s ignorance and not to a
low opinion of the paper in question,




e

i

Unfortunately, at that point, there was a tiny gap left: there have been modular’
forms of integral weight which did not correspond to Jacobi forms although they should.
Meanwhile this gap can be filled by introducing a certain type of non—holon.mrphic
Jacobi forms: this is indicated by the term "skew-holomorphic” in the above diagram.
The resulting, completed correspondence between Jacobi forms and modular forms 1s
now that easy to formulate that it seems to leave no wishes open. Moreover, this
correspondence is not merely a tool to study Jacobi forms (although it is), but it is
rather a2 deep (and nevertheless handy) tool for studying elliptic modular forms of
integral weight and their arithmetical significance. All this is combined in the adjccti\;;f

“perfect” in the above diagram. .

In the following we shall try to explein the highlights of the theory of Jacobi forms
so far obtained. We shall not speak about its applications listed in the diagram. For this
the interested reader is referred to [G-K-2] (for Heegner points), {Z] (for elliptic genera),
IC] (for a spcradic appearance of skew-holomorphic Jacobi forms in string theory). Also,
we shall not speak sbout results concerning Jacebi forms of higher degree (or genus),
for this the reader is referred to [Mul,[Zi]. Instead we have inserted a section to recall
the basic features of the Jacobi forms since, to our feeling, Jacobi forms are not really
common property yet. Finally, we would like to stress that the list of references at the
end is not at all complete, it only reflects what is touched or mentioned in this article.

2. What are Jacobi forms?

Let k be an integer, and let My(Spy(Z)) denote the space of Siegel modular forms of
degree 2 and weight k on the full Siegel modular group.-By definition this is the space
of holomorphic functions F(r,2,7') in three complex variables 7,2, 7' with 7, 7' from
the Poincaré upper half plane H = {r = u +iv € C|v > 0} and z from C such that
3(1)3‘(7-') - 9(z) > 0, which are periodic in each variable with period 1, which satisfy
F(3

r’?

- 5;-) = ¥ P(r,z,7'}, and the Fourier expansions of which have the form
F(r,z,7") = A(n,r,in)ez’ (""*"*""'),
n,emEL,n ML :
rioamngt
where A(n,r,m) = A(n',,m') if the quadratic form [r,r, m} (= nX?4+rXY +mY¥?)
is equivalent modulo SL2(2) to the quadratic form [n', 7', m'].
In particular, such a function F is periedic with respect to 7', and thus we may

consider its Fourier expansion solely with respect to this variable:

F(‘r,z,'r') = Z ¢m(7'-, z)ezm'mr’ ;
m>0 ’

I
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This is the 3o called Fourier-Jacobi development of F. Of course, ¢(7, z) is nothing else
but ¥ A(n,r,m)e?™(»m+r3) 1t is clear that the automorphic behaviour of F implies
also some automorphic behaviour of the ¢,(7,z). For m = 0 it can easity be checked
that ¢, is independent of z, and, considered as function of , it is not}ﬁng else than
an elliptic modular form of weight k. For positive m the function
following three conditions:

¢ = P, satisfies the

(i) ¢(r,z) is a holomorphic function in v € H and z € C,
(ii) ¢ir,2) is periodjr in each variable with period 1 and it satisfies the functional
equation ¢(2, ’)e"?’“"‘“ = r¥g(r, z),

(iii) the Fourier expansion of ¢ is of the form

Hrzi= 3 Cla et

Ar€Z,A50
r3mamodim

where the Fourier coefficients C{A.r) depend on r only modulo 9m

{To identify the latter Fouder development. of ¢ = &,, with the one given above, set
A =712 —4mn and C(A,r) = A(Z

= 2 r ).} The function ¢ is a prototype of what
is called a Jacobi form. More precisely, any function &(7, z) which satisties these three
conditions is called a Jacobi form of weight ¥ and index m. The space of all such
functions is denoted by Ji .

Of course, in these considerations one does not have to stick to Siegel moduiar
forms on the full modular group. Dropping this restriction and mimicing the above
procedure, one is led to the Jacobi group J(R) and to the general notion of Jacobi
forms as automorphic forms on this group. The Jacobi group J(R) is a certain central
extension by $?, thg group of complex numbers of modulus one, of the natural semidirect
product of SLa(R) with the group of row vectors R?:

J(R) =SLy(R) x R? - S*.

Identifying SL;(R), R? and S with their canonical images in J(R) so that any 5 &
J(R}) can uniquely be written as n = A[A, u]s (4 € SLp(R), (A, u) € R* s € §Y), the
multiplication law in J(R) is given by 0’ = AA (A, u) A’ + (N u))jss'e’™". Here w

denotes the determinant of the two by two matrix with (A, )4’ as fizst and (X, 4} as

second row. The Jacobi group acts on H x C by - {r.z

)__rar‘b THAT U .
) =0 Ty - and on

functions ¢ on H x C by

(Ple,mn) (1,2) = &(n - (7,2)) (e + d) Fe Do UL L b2 A n )

R , .
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Here, 8s above, 5 = A[}, p}s with A = (] 3}, and k,m is a given pair of integers. For a
given subgroup I' of finite index in §Ly(2) set TV i= T o Z3(C J(R)). Then the space
Jyx.m(T) of Jacobi forms of weight k and index m on I' is defined to be the space of all
hciomorphic functions ¢(7, 7) oo HxC, satidfying ¢lr mn = ¢foralln e T and having for
any 4 € SLy(2) » Fourier expunsion dli,md = Y caln, 7)™ with eq(n, 7)) =9
for r2 > 4mn. (Here the n are in general not integral but rational numbers with bounded
denominator dependin: on A.) For positive m the space Jim(SLa(Z}) coincides with
Jim us defined before, and the spaces Ji m(I') are the natural generalizations of Ehe
Jem '

Note that the really interesting Jacobi form= oceur for positive index only: a Jacebi
form ¢{, z), considered, for fixed s a function of z, is nothing else but a holomorphic
theta f(xnctinn on C/Zr + Z with 2m zeroes; thus, there are no Jacobi forms different
from zexc {or negative m, and a Jacobi form of index m = 0 does not depend on z and

may be considered as a function in 7 transforming like an elliptic modular form.

Une could go even further and define: Jacobi forms of half-integral weight. In this
wider class of Jacobi forms the most simplest opes are those which gave their name to

the whole theory, namely the Jacobi theta functions

o2
B (T, 2) = z eFrilfzrars)
m,elT, %) .

rER,
s pmodim

{m & positive integer, p an integer modulo 2m}, and which occur already in the work
;;i C.é.J. Jacobi. In the up-to-date language these Jacobi theta functions are then
elements of J; ,,(T(4m)). By the way, these theta functions, or at least combinations
of them, occur in the Fourier Jacobi development of the most simp}est Siegel mgdula.r
form of 'clegme two, the form 9(r, 2,7 )= 3, ez epmirirarostei’y

The Jacobi theta functions are not only the most simplest examples of Jacobi
forms but in some sense they are also the most basic Jacobi forms. To explain this in

more detail lot us consider for simplicity the cese of a Jacobi form & of index m and,

say for simplicity, on SLa( Z).- The special property of such a form that its Foufier
coefficients C(A.r) depend on r only ‘modulo 2m can also be stated by saying that
any such ¢ can be written as P72} = 2::, hp(7 Y0, (T, z} ;with suit.able functions
ho(r) (of course, ome has explicitly hy(r) = £ C(A,p)e? 7)) It is known that
the Jacobi theta functions Om,p are invariant under SLy(Z) with respect to "lym” (to
be precise, not each Um, is fixed by SL2(Z), but only the space sp@ed by all ?he
#,, 18). Comparing this transformation law with the one satisfied by ¢, and observing
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that the A, are uniquely determined by ¢, it can be seen that that they transform so
to speak dual to the ¥, ,. In fact, the h,(7) belong to M,,_*(I‘(4m)),ly the space of
modular forms of weight k — 4 on the main congruence subgroup I'(4m}). Even more,
the correspondence ¢ =+ Z::, h, ® 9., defines an isomorphism

= SLa(2Z)
Tem-Za (M,‘__§(I‘(4m)) ® span{Smlp=1,:-- ,2m}) .

Here M,_3(I(4m)) is considered as SL,(Z)-right module via the usual (projective)
action: of SL2(Z) on modular forms of weight k& — %; as mentioned before SLy(Z) acts
(projectively) on the spak:e spanned by the 9, , via ”Iiym”’ thus it acts (in fact, really,
not only projectively) on the tensor product of these two spaces, and the right hand

side of the above isomorphism denotes the subspace in this tensor product consisting of
those elements fixed by SLy(Z).

This isomorphism is the main key to understand the connection between Jacobi
forms and elliptic modular forms of half-integral weight. A closer investigation of this
connection was given in {S1]. However, we do not want to go into this here but it
may give the reader who is well aquainted with elliptic moduilar forms an intuitive
understanding of the basic features of the theory of Jacobi forms.

These basic features are:

» For each pair of integers Jx,m is finite-dimensional (actually dim Jem = kT"' +
(1)), '

. there existsa Hecke theory for Jacobi forms, i.e. for each positive natural number
{, relative prime to m, there exists a natural Hecke operator T'(1) on Ji mm, and the space
Jim has a basis consisting of simuitaneous eigenforms with respect to all T(1).

= there exists a natural notion of Jacobi Eisenstein series and Jacobi cusp forms.

® there exists a Petersson scalar product (¢,%) on J P, the space of Jacobi cusp

iorms (to be precise, (,9) = I ¢(r,z)¢(r,z)e":%"vkii"—d-‘”’-g£‘1 where F is a funda-
mental domain for H x C modulo SL,(Z) J, and u,z and v,y denote the the real and
.maginary parts of 7 and z respectively).

“imilar basic facts hold for the more general spaces Jk.m(T) too, of course.

Before ending this short review of basic ingredients of the theory of Jacobi forms
« should be noted that Jacobi forms are very concrete objects. Here is an illustration
¢ this fact: If we multiply a Jacobi form by an elliptic modular form we zet back 2
acobi form with same index but, of course, different weight: in other words the space

Dkez Jrm is a module over the ring @, ., Mi(SLy(Z)) = CIE,, Es] of elliptic moduiar
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forms on the full modular group; it is even a free module of rank 2m. The two generators

in the case m =1 are

El(r,z)= (MHean)72)
"€50,m 2 \SLD”

- "A(n) 2«-(111’-3f+r2)
R SR R I\ (Z ;,T:)e

&, rERACT n>1
rimamodd
1 .d s 2:6(13—}5-2-7-“:) -
- 2 —— (= (—1)%e
=n(r)"" 2 {' Ei(m) m’k(dTE"(T))}* )
ro€Z N .
rptsmod?

for k=4 and k=6. (For the first identity cf. ‘{E-Z], for the second one [S1]. The

. A 37 such that 1}pin = 1 for even
notations are: SLy(Z) ., =subgroup of all 7 € SLe(Z)” such (—1)‘; ;*-i o s
k: furthermore, ra(n) = { {“’ mod 2njz? = & mod 4"'}‘ Ve = PTG ’

s k—1\.2xinT — oTF 11— e?ﬂﬂf).)
usual, Eg{r) =1~ -ﬁ—f: Lon>1 (e e ,a(my =€ [lapi(

3. Jacobi forms and Siege! modular forms
The starting point for the theory of Jacobi forms here as well bjstoricz.ﬁly. was the fact
that any Siegel modular form has a Fourier-Jacobi development. As 1nd1c‘a.ted above,
and as will be further shown in the following sectious, the theory is very well developed
at present. Thus it lies at hand to set up the following program: '

e Study Siegel modular forms {of degree 2) via *heir Fourier»Jasobl.deVe}opmmt
To the authors knowledge there are only two main results in this direction. The first

stems from the very early beginning of the theory of Jacobi forms.

Theorem ([Ma}). For each integer m > ( there exists an operator Vi : Jxq — Jieam)
given explicitely by ) '

S c(n’r)ei!ti(nr+r:) — z( Z uk~lc(_7§;?';))e2r:(nr+rz)7

ya .
nr n,s aj(n,r.m}

such that the map ¢ — ¢|V with
(V)(r 2,7 ) = 3 (#Vim ) (7 2"
m20
defines a Hecke-equivariant embedding Jiy — Mi{Sp2(Z))-
. 1a01
{In the formula for ¢{Vu the term Taio a*~1¢(0,0) has to be interpreted as 3((1 ' k).)
The image of the above embedding it the so-called Maass Spezialschar and th'e discov-
erv of this embedding was one of the major steps in the proof of the Saito-Kurokawa
conjecture.

The sccond theorem along the lines of the above program is the following one.

Theorem ([K-8]). Let F and G be two cusp forms in My(Sp2(Z)), let

F(r,z,7") = Z ¢m(r,x)e2“"'" G(r,z,7) = Z 1/;,,,(1',2)e2';""‘"
m>1 m21 i

be their Fourier Jacobi developments, and denote by ($m,m) the Petersson scalar

product of the Jacobi cusp forms ¢, and 1,. Then the series

e (s D)
Drg(s) = (25— 2k +4) MEEI B
converges absolutely for large R(s) (actually for R(s) > k +1) and it has a meromorphic
continuation to C. It is entire if (F,G) = 0 and otherwise has a simple pole of residue
residue ﬁ%‘%}(i’, G) at s = k as its only singularity. Moreover it satisfies the functional
equation

Dy g == {2x)""*T(s)I(s — k + 2)Drg(s) = FG(2k—2—3).

{Here {F,G) denotes the Petersson scalar product of F and G, ie. (F, G) equals the
integral [ F(r,z,7)G(r,z,7')(vv' — y*)*~3dudzdu’dvdydv’, where u,z,u' and v,y,v'
denote the real and imaginary parts of 7, z, 7', respectively, and where the integral has

to be taken over a fundamental domain for the Siegel upper half plane of degree two
modulo Sp,(2Z).)

The above theorem obviously shows some anology to the theorem about the Rankin
comvolution of twe elliptic modular forms and, indeed, its proof is essentially an adaption
of the Rankin-Selberg method to the case of Siegel modular forms of degree two. What
is striking in the above theorem is the fact that for even k the Dirichlet series Dp g(s)
satisfies exactly the same functional equation as the Andrianov (or Spinor) zeta function
Zp(s) associated to Siegel modular forms F. At present the exact relation between the
series Dp G{(s) and the Andrianov zeta functions is not known. There is only a partial

result, which, in a different formulation, can already be found in the work of Gritsenko
{Gr}.
L

Supplement to the last Theorem. Let k be even. If G is an element of the Maass-
Spezialschar and F is a Hecke-eigenform then Dp ¢ = (¢1,%1)Zr(s).

Thus the above theorem give rise to some open problems:
o Does a Herke-eigenform F in My(Spz( %)) necessarily have ¢, # 07 { Note that an
~ffirmative answer would give, via the above theorem and its supplement, a new proof

‘oz the analytic continuation and functional equation of the Andrianov zeta function.}




i
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e If F is a Hecke-eigenform in My(Sps(Z)), but not in the Maass-Spezialschaar.
what is then the relation between Dp p(s) and the Andrianov zeta functions associated
to elements in My(Sp2(Z)), if there exists any? ( Note that one has Dp p(s) 7 Zp(s}
since, by the above theorem, D, p(s) does have a pole whereas, by a result of Evdoki-
mov and Oda, Zg(s) does have nane.} Can it be the case thai Dppls) provides a

counterexample to a so far unproved but exspected converse theorem?

4. Jacobi forms and elliptic modular forms of integral weight

That what one may consider as the main theorem in the theory of Jacobi forms cani be
summarized to the following thecrem. ,

Theorem ([S-Z]). For each pair of integers k,m € Z, m >0 the space Jg m of Jacobi
forms of weight k and index m is Hecke-equivariantly isomorphic to a certain natural
subspace Mz, _,(m) of the space Mai—2(To(m)) of all elliptic modular forrs of weight
2%k — 2 on [o{m).

A first and rough description of the space of modular forms occuring in the theorem is

My(m) = {al‘x newforms on To(m)}@{a nice choice of oldforms;.

More brecisely. the space Mk(m) is spanned by all f € Mi(To(m)} such that the
standard L-series L(f, s} = ey of fir)=3a {£)e** " is of the form

l—-ll)

L(f,s) = (I] @l Lt o)

pldr
for some m'{rn, some new-form g on I'e(m’} and polynomials §,(s) in p™° satisfying
Qp(s) =p*E7Qu(k - o)

for p*|l=. * The symbols J'\/ff(m) denote those subspaces which consist of all f €
Mi(m) such that L*(f,s) = (27)"2*miT(3)L(f, ) = £L*(f, k — 5), respectively.

* This definition is not strictly precise. First of all the expression "new-form” is
usually not applied to Eisenstein series, so a word of explanatiou is perhaps indis-
pensable: the space of new form Eisenstein series in Mi(To(m)) is by definition 0 if
m is not a perfect square or k = 2,m = L otherwise it is spauned by the semes
Tvo (Zdif 2 rx(d)x(4 )) e2™T where x runs through all prxm- tive Dirichlet charac-
ters modulo /m (with the convention 2o &x(d(§) =0or = 31 —kyforx #1
and x = 1, respectively). Secondly, if k = 2, then M{m) contains additionally the
series my Ea(my7) — moEa(met) for all decompos:tlone m = mqmy. Here E, is the
{aon-holomorphic) modular form Eo(r) =1 - - 243 > (Zd" ) e T,
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It is left to the reader to contemplate this definition of the space Mi(m). But we
should add that it may be viewed as the sﬁan of all those Hecke-eigenforms f on To(m)
such that the eigenvalues of f with respect to the various Atkin~Lehn§r involutions
reflect rather an intrinsic property of f and are not just an accident d;:curing when
changing levels. Secondly, one of the most striking features of this space My(m) is that
it has the most simplest dimension formula among all subspaces of M(T'o(m)) which
are still big enough to reflect all various kinds of species occuring on ['e(m) in weight
k (In fact, one has dim M(m) = d(m(k — 1)) + }a where d{z) = & — }(§) - 3(Z})
((3) =Legendre symbols) and & denotes the greatest integer with a®|m). The same
remark applies to the formula for the traces of the Hecke operators acting on M(m).
Thus, there are several hints that the spaces AMz(m) seem to be very natural and they
may deserve further attention (For more argumenis the reader is referred to {5-7].)

As mentioned in section 2, Jacobi forms are very closely connected to elliptic mod-
ular forms of half-integral weight. In particular, it is possible to show, using the
isomorphism- described in section 2, that for prime numbers m and even & the map
b= Zz"' hy®@Bm,, Ez"‘ h,(4m7) defines a Hecke-equivariant isomorphism of Ji m
with that part of Kohnen's 74" -space M+ (m) such that this isomorphism, Kohnen'’s
refinement of the Shimura lift (cf. {K}), and the lifting of the above theorem all together
yield a commutative diagram. In that sense the above theorem may be counsidered as a
generalisation of Kohnen’s work on the Shimura lifting.

For m = 1 the above theorem, together with the theorem of the preceeding sec-
tion about the Maass lift, yields the Saito-Kurokawe lift, i.e. it establishes a Hecke-
equivariant isomorphism between the Maags Spezialschar in My(Sp;(Z)) and the space
Mag.-2(SL2(Z) ). (Originally, this correspondence was proved to be true using the cor-
responding Kohnen ;’+”-spaces.)

Note that the above theorem presents itseli" in a completely smooth, natural and
untechnical manner, once the notion of a Jacobi form is accepted. Even the still slightly
iechnical term ”Hecke-eqivariantly” could be eliminated; we shall come back to this in
the last section, where we shall reformulate the above theorem. There we shall also give
one or two hints that the above theorem can (and should) be read as a theorem about
modular forms rather than a theorem about Jacoebi forms.

However, far the moment there is one tiny lack of beauty in the above theorer.
This is the " —"-sign attached to the symbol Mgk_g(ht). In particular, there are so far
o Jacobi forms corresponding to Mai—3(1) (= M(SLe(Z))) for k divisible by 4. It
;aere i3 any hope to fill this gap, then one obviously needs a new type of Jacobi form.




- 178 -

5. Skew-holomorphic Jacobi forms

The most simple examples of Jacobi forms are, as pointed out before, the Jacobi theta

= 3 ympmod2m ArithmrHrs), They may be considered - at least with
Tespect to their analytic features - as prototypes of the Jacobi forms. In particular, they

series ¥ o(7,2)

are holomorphic in  and z. But moreover they satisfy the heat equation

.8 &
(Smm—a-; - —8-2—2)19,,.,,(1',2) = 0.

The latter is not true for the Jacobi forms so far considered. Thus it is reasonable to ask
whether there are further natural examples of sutomorphic forms on the Jacobi group
J(R) satisfying the heat equation. To find such examples it lies at hand to look at
Jacob theta series attached to quadratic forms which, of course, must not necessanly be
definite. Non-holomorphic elliptic modular forms attached to quadratic forms have been
constructed systematically in [V]. By mimicing the method of this paper it is possible

to generalize the results stated loc.cit. from elliptic modular forms to Jacobi forms.

Theorem (S 3]). Let F be a symetric, non-singular, integral n X n matrix with even
diagonal. Let p(X) be a function on R" such that p(X )e"'x FX is a Schwartz function
and (RV'F'V + X*. V) p = (k — 2)p for some k € Z. Finally, let X, € Z", and set

m = %x:,rxo, D =(-1)det(F), £= level ofF.

Then the series

8(r,z) = T p(olX + gxone:i(x‘p.*(rnxmxoz) (v=Im7, y=Tmz)
AN 4 o A v i

satisfies

B (szgs 2t20) (er + &) Hler + 4% Z”m(ﬂl'téﬁw‘*"”*”“ (D> (7, 2)

forall A= (:,‘;) € To(£), and all A, u € Z.

{"The notations are: ”.¥”=transposition, V= (3%, ey 3%:) for X =(z1,-.-,Za), thus
Xt.V=Yr, a:r-a—i-’-; recall that the level of F is the smallest positive integer £ such
that £F~! is integral with even diagonal entries. Note that n has necessarily to beeven

(a8 can be shown using the assumption "k € VAN

For positive definite F and p(X) = 1 the theorem produces in 2 known way holomor-
phic Jacobi forms. But we also find such functions as we are looking for: consider a ma-
trix F with signature (1,n — 1), n even, pick a vector Xj € Z" with X FXp > 0, choose
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a vector = € C™ and a non-negative integer d, and set p(X) = (E'FX  )de?* X1 FX.s
{for any n-vector X, we use X | :=X—§£—;§:Xo). If‘d_>,2 we assume = 'F=; = 0.
Then p( X) satisfies the assumptions of the theorem (with & = 1 —d — %), Moreover,
i is easily verified, differentiating term by term, that v‘*ﬂ(r,z) with the correspond—
ing ¥ constructed from these data satisfies the same heat equation as the Jacobi theta
functions do.

“We can look at these examples asé the prototypes for a new kind of Jacobi form.
Thus. after a closer examination of these examples we would be led to the following: for
2 subg.oup I of finite index in SLy(Z), we define Jy ,(T'), the space of skew-Lolomorphic
‘acobi forms of weight k and index m on T, to be the space of all smooth functions ¢(r, 2)

a H x C, which are holomorphic in z and satisfy (8mim-& ;p)qﬁ(r z} = 0, which
atisfy |} 7= ¢ for ail 7 € T o 2%, and which, for each A € SL3{Z), have a Fourier

ri—dmn

S calm, r\eg’"("""'““!““”*") with c4{n,r) =0 for

- < 4mn. Here, for any pair of integers k,m, the slash-operator {3 " is defined by

-evelopment of the form ¢(7,z) =

lk,m
.imost the same formula as "|¢,,»” with the only difference that the factor (¢ + d)* has
> be replaced by (¢ + d)*~}er + d|.

However, we are mainly interested in Jacobi forms on SLy(Z), and here, as in the
olomorphic case and for positive m, the above definition is easily seen to be equivalent
o the following one. The space J; . of skew-holomorphic Jacobi forms of weight k and
dex m (on SL,{(Z) ) is the space of all functions ¢(r, z) satisfying:

(i} &(r,z) i3 a smooth function in 7 € M, and holomorphic in z € C,

(i1} ¢(T,2) is periodic in each variable with period 1 and it satisfies the functional
auation »

1

B(=, Dyemm S~ 744, 2),

(11i) the Fourier expansion of ¢ is of the form

7

2 2 ; .
27ri(Lz:-‘->-u+L—FLeliv+rz) o
M1, z) = E C(A,r)e ™ ™ (T =1u+1v)
L, r€%,420
M A modim

-sizere the Fourier coefficients C(A,r) depend on r only modulo 2m.

iote that the shape of the Fourier development (iii) implies that ¢(r, z) satisfies the
aeat equation, whereas it would imply that ¢(7, 2) is holomorphic in 7 if we would have
1o sum over non-positive A. Thus, if we replace in (ii) the expression ?"‘IH by r*
~ud the condition A > 0 in (iil) by A < 0 we reobtain exactly the definition of the

solomorphic Jacobi forms. (This is the reason that we superflucusly wrote |A| for A in
m).)
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With regard to this formal analogy in the definition it will not be unexspected
that skew-holomorphic Jacobi forms exhibit essentielly the same basic features as the
holomorphic oﬁes., eg. Ji, is finite dimensional, one has 2 natural Hecke theory, the
notion of Eisenstein serie& cusp forms, Petersson scalar product, connection with elliptic
modular forms of half-integral weight etc..

To give a completely explicit example of those theta functions which led to the
definition of skew-holomorphic Jacobi ferms apply the above theorem to F = (g ;),

set
T(r z) _ Z ezﬂ(:tr+$-'—','-)iiv+(a+t)z)

A =
Ry A

&

or, more generally,

” imee=mor)? . s
- ITe _ﬁ.—ZJ_w-Q- my et mat)s)
Ik;nn.’n:(rf‘z) = E (mis ”‘2t)k tetmirerd ™ s ?
sEZ

where k = 1,2 snd m = m;my is any given decomposition of a given positive integer m.
From the above theorem (or by a simple, direct application of Poisson summation) it is
easily verified that Te.m,,m, € Jf p,- Starting with these relatively simple functions it is
easy to construct more examples: multiplication of a skew-holomorphic ¢(7, z) by f(—7),
where f(r) is an elliptic modular form, yields again a skew-holomorphic form with the
same index; using this, the space P, .5 Ji , becomes a free @, . Mi(SLy(Z) }-medule
of rank two; it is possible to show that

Tiy = My_1(SLy(Z) ) T(r,2) & Mi—a(SLx(Z))) - U(r,2)

where

Try= Y o)

d.reZ
rimd?mods

as above, and

U(r,z):= ——T(T z) + T(r 2)Ex(—7).

6. The Main Theorem of the theory of Jacobi forms

X we denote by C(A, r) the A, r-th Fourier coefficient of the skew-holomorphic Th;m, m,
€ J3 pmym, introduced in the foregoing paragraph, i.e. if we set

cAa )= S (m1s — mat),
s,0ET
(mys~mgt)iea
™ye4mmgtemr
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then it is easily checked that

m; mg — 242 (Z C'(d2 d)) eimitr my E(my7) - m}Eg(mzr)

€ \de

Recall that my Ey(my 1)~ my Ey(m,r) defines an element of M._T(mlm;). These exam-
ples are special (and the most simple) cases of the following general theorem.

Main-Theorem. For any pair of positive integefs k,m, k > 2 the space Jy », @ J,, -
is He "e-equivariantly isomorphic to Mqy_,( m). More precisely, one has, for any fun-

damental discriminant A and any integer r such that r? = A mod 4m, a map

Sar: Jem & Jk.,m — Mopo2 (m) s

given explicitely by

. OET £2>0
rimAmodam -

2w a’-—;ﬁ-+#,}?—lw+n /
Z C(A,r)e ( — E (de 2\

It commutes with all Hecke operators and maps Jim and J; m to Mgy, () and

\4 2k—2(m) tespectzve]y Some linear combination of the maps Sx - defines an isomor-

phism,

(The expression T, a*~% () ¢4 (—;—A ) for £ = 0 has to be interpreted as the
value of £Cy4(0, N¥asi(2)aats=2- k)

Note that the description of Hecke operators for Jacobi forms is implicit in the
theorem since it explains what a Jacobi Hecke eigenform has to look like: a Jacobi form
¢ is a Hecke eigenform if and only if its image under all S , is a Hecke eigenform, or.

what is egrivalent by some formal manipulations, if and only if the Dirichlet secies

> Ch(efaer) e

©1
(¢, mymt

has an Euler product for all r and ajl fundamental A such that 72 = A mod 4m. Thus,

in order to understand or to apply the theorem, it is not necessary to study Hecie
operators for Jacobi forms.

Half of the theorem, namely the part conceraing the holomorphic Jacobi forms, was

proved in [S-Z]. To be honest, the other part is not yet completely proved. (Its proof

.depends on a comparison of the traces of Hecke operators actmg on Jacobi forms and




- 182 -

modular forms. This can be done without doubt completely analoguous to the case of
the holomorphic Jacobi forms but it is not completely written up yet.)

The theorem is, at the first glance, clearly a theorem about the _arit.hmeticalv struc-
ture of the spaces of Jacobi forms. This is, of course, not of any interest for those who
are not at all interested in Jacobi forms. But it is also (or even, rather) a theorem
about elliptic modular forms: first of all, it Links, as explained in the introduction and
by theorems cited or indicated above, elliptic modular forms to other types of modular

forms. Secondly, and this is perhaps the most important point, it provides a new tuol |

for the study of elliptic modular forms in Mp(To(N)). I we consider, say, a new-Hecke
eigenform on To(m), then, by the Main Theoretn, there is a unique Jacobi form {up
to multiplication by constants) of index m eorresponding to it via the above theorem.
This Jacobi form does not only carry explicit information about the Fourier coefficients
of the mnodular form (via the explicit description of the above Sa,r), but, as can be
shown, also the values of the L-series of the given modular form at the integer points
in the exitical strip, and more génerélly the periods of that modular form, are explicitly
given by the Fourier coefficients of this Jacobi form. And this Jacobi form links both
informations. The result about the special values is obtained by computing the adjoint
maps of the Sa » with respect to the Petersson scalar products (aﬁd’ after restriction to
cusp fm, of course). Fer details and mere information in this direction (at least in
the case of holomorphic Jacobi forms) the interested reader is referred to [G-K-Z}.

To conclude this overview, we give some examples of Ja_cobi forms which are more
subtle than those so far considered. Fix a mateix () € SLa(Z) and set

o(r, zin) = v}

'
an——
i

Z ( J e—«;l,t_ b?.{macf(q'q-i—‘.i‘)‘?)e?;j(£—’.‘—‘;—¥—'#rfr:).

r.a,b €2
bErmod2m

Here 5 € R, and, as always, 7 € H, z € C, v =) Moreova; for each triple a,b,¢
we use ’

& = maa® + bay+e7t, ¢ = maf? + bBE + cb.

By the theorem of section 5 this transforms like a skew-holemorphic Jacobi form of

index m and weight 2 in 7, z, although it is none.. But if we set
o0
$a(rz)=m~¥ / e(r,zm) -dﬂﬂ
]

§hen this still retains the transformation laws satisfied by O(r,z:in) and by a simple
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computation .

¢A(1’, Z) = Z

a,r€z,0>0
r2mAmodam

f23- r3 . ‘
calBr zm(..,".,A._.+..1tg.,+,.,),‘
where

CA(A,T) = &{(‘Bb»c) € l:(Ay f')la' > 0, c' < 0} - ”{(a’ b’ C) € ‘C(A,T)Ia’ < 0’ p > 0}

U

_ - a 4

> Bi()+ > Bi(=).
(a.2,0)€L(D,r) m
C<ar Lmietn PO

Here
C(Ay 1') = {(ayb, C) € zlb2 —4mac = A, b= r mod 2m}

Bi(z) =z — % is the first Bernoulli polynomial, and a’,¢’ have the same meanin
above. Thus ¢ 4(, z) is a skew-holomorphic Jacobi form of weight 2 and index m '
Note that the two sums in the last formula vanish unless A is a perfect square
By the Main Theprem {and the facts that ¢4 is a cusp form and that 84, ma :::sh
forms. t6 cusp forms if A # 1), we thus obtain for example, for any m such ;;mt Jf/i+( m};
contains only one cusp form, say f(r) = 2121 af(£)e*™ " and af(1) =1, and fo2
r,4A, r? = Amod 4m, A # 1 fundamental, the identity ' o

2y X

£21 | (a,8,0)€C(A42,70)

sign(a’) £~

afc'<o
{5 e (280 (S
("v‘-:')f‘igA,r) &1 2, '>1af() .

(The reader may vex;ii;y that fhe first sum on the right hand side of the last identity for
m = 1.1 and A = (31), A = 5,7 = 7 equals -1; thus, in general, the given identities
really involve the modular forms. f.)

The method used here to produce the Jacobi forms ba can be generalized. It i
even possible to construct in this way, for any arbitrarily given index m, a set of ..Ia.c :
forms of weight 2, the Fourier coefficients of which can be described a; explicitly a(:m;

eifectwe as those of ¢ 4, and of which it can be shown that they span the whole space of
(k olomorph:c. and skew-holomorphic) Jacobi forms of index m. Via the Main Theorem
we then obtain as well a simple arithmetical rule to ‘generate explicitly the space of all




modular forms of weight 2 on I'p(m) for any given . For details the reader is referred
to [82].
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